Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekz_voprsy_po_material_spets_150206.doc
Скачиваний:
4
Добавлен:
17.04.2019
Размер:
1.07 Mб
Скачать

1. Кристаллическое строение металлов. Понятие об элементарной ячейке кристаллической

решетки. Параметр решетки.

2Основные типы кристаллических решеток металлов.

3 Анизотропия кристаллов. Полиморфизм. Примеры.

4 Дефекты строения реальных металлов. Точечные дефекты. Линейные дефекты. Поверхностные

дефекты. Влияние дефектов на свойства кристаллов.

5.( Строение металлических сплавов. Понятия: сплав, термодинамическая система, компонент, фаза.

6. Твердые растворы, механические смеси, химические соединения: определение, условия

образования, примеры.

7 Кристаллизация: движущая сила кристаллизации металлов. Механизм и кинетика

кристаллизации. Кристаллизация: зарождение и рост кристаллов.

8. Факторы, влияющие на процесс кристаллизации. Форма и размеры кристаллов. Строение слитков

металлов.

9. Диаграммы состояния системы с неограниченной растворимостью компонентов в твердом состоянии.

Примеры.

10.Диаграммы состояния сплавов с ограниченной растворимостью компонентов в твердом

состоянии и эвтектикой. Примеры.

11.Диаграммы состояния сплавов с нерастворимостью компонентов в твердом состоянии и эвтектикой. Примеры.

12.Диаграммы состояния сплавов с образованием устойчивого химического соединения.

13.Связь свойств сплавов с типом диаграмм состояния. Диаграмма состояния железо-углерод. Фазы и

структурные составляющие железоуглеродистых сплавов.

14.Структура углеродистых сталей и чугунов.

15.Напряженное состояние. Упругая деформация. Влияние упругой деформации на свойства металлов.

16.Пластическая деформация. Механизмы пластической деформации. Дислокационный механизм

пластической деформации: консервативное движение и переползание дислокаций.

17.Влияние нагрева на структуру и свойства деформированного металла: возврат, первичная,

собирательная и вторичная рекристаллизация.

18.Особенности деформации поликристаллов. Влияние пластической деформации на структуру и

свойства металлов. Упрочнение при пластической деформации. ТО

19.Термическая обработка металлов и сплавов. Классификация видов термической обработки.

20.Термообработка сплавов, не имеющих фазовых превращений в твердом состоянии и с

переменной растворимостью компонентов в твердом состоянии.

21.Превращения, происходящие при нагреве сталей до аустенитного состояния. Понятие о

критических точках сталей.

22.Превращения, происходящие при охлаждении сталей: сдвиговое (мартенситное) превращение.

23.Способы отжига сталей: полный и неполный, гомогенизирующий, сфероидизирующий отжиг,

нормализация.

24.Закалка сталей - полная и неполная. Понятие о критической скорости закалки. Закалка сталей на

мартенсит.

25.Превращения, происходящие при отпуске закаленной стали. Низкий, средний и высокий отпуск.

26. Диаграмма изотермического превращения переохлажденного аустенита (С-диаграмма).

2 Типы кристаллических решеток металлов

Для большинства металлов характерны следующие типы кристаллических решеток: объемно-центрированная кубическая (ОЦК); гранецентрированная кубическая (ГЦК); гексагональная плотноупакованная (ГПУ). Основные типы кристаллических решеток представлены на рис. 2.4. В объемно-центрированной кубической решетке (рис. 2.4, а) атомы расположены в углах и центре куба. Период решетки равен а, координационное число К= 8, базис решетки равен 2; 8 атомов расположены в углах куба, 1 атом в центре куба принадлежит только одной ячейке). Данный тип решетки имеют металлы К, Na, Li, Та, W, Mo, Fea, Cr, Nb и др.

В гранецентрированной кубической решетке (рис. 2.4, б) атомы расположены в углах куба и центрах его граней. Эта решетка характеризуется периодом а, координационном числом К= 12, базисом, равным 4: (1/8) • 8 + ½ • 6 = 4; 8 атомов в углах куба и 6 атомов в центрах граней, каждый из которых принадлежит двум элементарным ячейкам. Кубическую гранецентрированную решетку имеют следующие металлы: Са, Pb, Ni, Ag, Au, Pt, FeY и др.

В гексагональной плотноупакованной решетке (рис. 2.4, в) атомы расположены в вершинах и центрах шестигранных оснований призмы, кроме того, три атома находятся в средней плоскости призмы. Периоды решетки — а и с, причем с/а > 1 (например, с/а = 1,633 для Ru, Cd и с/а > 1,633 для Mg, Zn), координационное число К= 12, базис решетки равен 6.

3) Анизотропия кристаллов и изотропия кристаллических тел. В кристаллических решетках атомная плотность по различным плоскостям неодинакова — на единицу площади разных атомных плоскостей приходится неодинаковое количество атомов. Сравним, например, для ОЦК решетки количество атомов в плоскости, совпадающей с гранью, и диагональной. Вследствие этого свойства в различных плоскостях и направлениях кристаллической решетки будут неодинаковыми. Различие свойств по разным кристаллографическим направлениям называется анизотропией кристалла.

Полиморфизм. Для ряда металлов характерно явление полиморфизма. Этим термином называют способность вещества формировать различные типы кристаллических решеток. Так, при разных температурах железо может иметь ОЦК или ГЦК решетку, кобальт — ГЦК или ГПУ решетку. Полиморфизм характерен и для других металлов. Различные кристаллические формы одного и того же вещества называются полиморфными или аллотропными модификациями

4)

5) Строение металлических сплавов. Под металлическим сплавом понимают вещество, получаемое сплавлением двух или более элементов с характерными металлическими свойствами. Металлические сплавы получают сплавлением элементов-металлов или металлов с неметаллами при преимущественном содержании металлов. Строение сплавов сложнее, чем чистых металлов.

6)

9) Диаграмма состояния сплавов для случая неограниченной растворимости компонентов в твердом состоянии. Рассмотрим диаграмму состояния сплавов системы медь - никель (рис. 14). Медь и никель, соединяясь в любых пропорциях, образуют непрерывный ряд твердых растворов, так как атомы никеля способны заместить в кристаллической решетке все атомы меди. Температура плавления меди составляет 1083°С, никеля 1445°С.

Рассмотрим кривые охлаждения (рис. 14, а) сплавов системы медь-никель для пяти составов следующей концентрации, %: lOOCu, 80Cu+20Ni, 60Cu+40Ni, 20Cu+80Ni, lOONi. Чистые металлы (кривые 1 и 5) имеют одну критическую точку - температуру затвердевания (кристаллизации), а сплавы (кривые 2, 3, 4) - две, т. е. сплавы в отличие от чистых металлов кристаллизуются в интервале температур. Например, кристаллизация сплава 3 начинается при температуре t1 (точка a1), при этой температуре из жидкого сплава начинают выпадать первые кристаллы твердого α-раствора, а заканчивается кристаллизация при температуре t3 (точка b1). При этой температуре затвердевает последняя капля жидкого сплава. Разная температура конца кристаллизации сплавов свидетельствует о том, что состав твердой фазы непрерывно изменяется.

Рис. 14. Диаграмма состояния сплавов медь-никель

Для построения диаграммы состояния (рис. 14, 6) на оси абсцисс сетки в координатах температура - концентрация откладывают (отмечают точками) составы пяти сплавов и восстанавливают из каждой точки вертикальные линии. После этого переносят на эти вертикальные линии с кривых охлаждения сплавов критические точки, а на левой и правой ординатах температур отмечают температуры кристаллизации чистых металлов - меди (100%) и никеля (100%). Соединив плавными кривыми температуры начала и конца кристаллизации всех сплавов, получают диаграмму состояния сплавов системы медь-никель с неограниченной растворимостью компонентов в твердом состоянии. Сплавы меди и никеля кристаллизуются и затвердевают в некотором температурном интервале. В пределах этого температурного интервала одновременно существуют две фазы: жидкий сплав и кристаллы твердого раствора - меди и никеля. На диаграмме этот интервал ограничен двумя линиями, соединяющими точки плавления чистых меди и никеля. Верхняя линия обозначает начало затвердевания при охлаждении или конец расплавления при нагреве, нижняя соответственно конец затвердевания или начало плавления. Рассмотренная диаграмма состояния сплава меди и никеля имеет три области. Область существования жидкого расплава лежит выше верхней линии, соединяющей точки плавления меди и никеля, а область существования кристаллических твердых растворов - ниже нижней линии. Между этими линиями находится двухфазная область, в которой одновременно существуют расплав и кристаллы твердого раствора. Верхнюю границу этой области называют линией ликвидус, а нижнюю - солидус («ликвидус» в переводе с латинского означает жидкий, «солидус» - твердый).

По этой же диаграмме состояния можно определить концентрации твердой и жидкой фаз в сплаве при его кристаллизации. Например, для сплава 3 при температуре t2 концентрация фаз определяется горизонтальной линией mn1, проведенной до пересечения с линиями солидус и ликвидус. Точка n1 показывает концентрацию твердой фазы, а точка m - концентрацию жидкой фазы. При температуре t3 концентрация твердой фазы определяется точкой b1 на диаграмме состояния, а концентрация жидкой фазы – точкой m1.

Из сказанного следует, что в процессе кристаллизации непрерывно изменяется состав фаз: жидкой по линии ликвидус и твердой по линии солидус. Кристаллы твердого раствора, выпадающие из жидкого при разной температуре, имеют переменный состав. Выросшие в первый момент кристаллизации, оси кристаллов обычно обогащаются тугоплавким компонентом (никелем), а междуосные пространства заполняются позже и обогащаются более легкоплавким компонентом (медью). Такую неоднородность отдельных кристаллов какого-либо сплава называют внутрикристаллической, или дендритной ликвацией. Дендритная ликвация тем больше, чем больше расстояние между линиями ликвидус и солидус.

Обычно это явление нежелательно и дендритную ликвацию предотвращают последующим длительным нагревом для выравнивания состава сплава, вследствие происходящего в нем диффузионного процесса.

К твердым растворам относят также сплавы систем Си-Аи, Ag-Аи, Ni-Аи, Fe-Cr, Fe-Va, Bi-Sb и др., кристаллизующиеся по рассмотренному типу диаграммы состояния, когда оба компонента неограниченно растворимы в жидком и твердом состояниях и не образуют химических соединений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]