Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVYeT_NA_BILYeT_YeNOIT.doc
Скачиваний:
2
Добавлен:
17.04.2019
Размер:
460.8 Кб
Скачать

36. Топливные элементы. Водородная энергетика.

Топливный элемент – это электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.

Принцип действия. Топливный элемент состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.

Топливные элементы применяются в: электрических станциях, аварийных источниках энергии, электромобили, морской транспорт, авиация, космос.

Водородная энергетика.

Водородная энергетика использует  водород  как носитель  энергии. Водородная энергетика также включает: получение Н2 из воды и др. прир. сырья; хранение Н2 в газообразном и сжиженном состояниях или в виде искусственно полученных хим. соед., напр. гидридов интерметаллических соединений; транспортирование Н2к потребителю с небольшими потерями. Водородная энергетика пока не получила массового применения. Методы получения Н2, способы его хранения и транспортировки, к-рые рассматриваются как перспективные для водородной энергетики, находятся на стадии опытных разработок и лаб. исследований. Выбор Н2 как энергоносителя обусловлен рядом преимуществ, главные из к-рых: экологич. безопасность Н2, поскольку продуктом его сгорания является вода, высокая теплопроводность, а также низкая вязкость, что очень важно при его транспортировании по трубопроводам; практически неогранич. запасы сырья, если в кач-ве исходного соединения для получения Н2 рассматривать воду . Водород м. б. использован как топливо во многих хим. и металлургич. процессах, а также в авиации и автотранспорте как самостоятельное топливо, так и в виде добавок к моторным топливам.

37. Электрогенератор. Электродвигатель. Применение их в технике и технологиях.

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Классификация электромеханических генераторов

По типу первичного двигателя: Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем; Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной; Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем; Ветрогенератор — электрический генератор, преобразующий в электричество кинетическую энергию ветра; По виду выходного электрического тока: Генератор постоянного тока, Коллекторные, Вентильные, генератор переменного тока, однофазный генератор.

Электрический двигатель  — это электрическая машина , в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Принцип действия. В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора и подвижной части — ротора. В роли индуктора, на маломощных двигателях постоянного тока, очень часто используются постоянные магниты.

Принцип действия 3х фазного асинхронного электродвигателя. При включении в сеть в статоре возникает круговое, вращающееся, магнитное поле, которое пронизывает короткозамкнутую обмотку ротора, и наводит в ней ток индукции, отсюда, следуя закону ампера, ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с к.з обмоткой.

Эл. двигатели применяются очень широко, в частности, применяются в жилищном и капитальном строительстве, в горнодобывающей и металлургической промышленности, энергетике, на транспорте.

Сегодня электрогенераторы используются на самых разных объектах. Например, генераторы могут быть востребованы:

  • На производственных и строительных объектах для увеличения мощности основных источников;

  • В банках или больницах в качестве резервного источника питания для увеличения мощности оборудования, или на случай отключения электричества;

  • В частных домах и коттеджах (как в одиночных, так и в целых поселках), в качестве аварийного источника электроснабжения;

  • Спасательными службами для экстренного обеспечения электроэнергией в случае любых чрезвычайных происшествий;

  • На мероприятиях, проводимых вдали от источников энергии и нуждающихся в мощном электроснабжении, например, на концертах или спортивных событиях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]