Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по Фиизикке 2.doc
Скачиваний:
0
Добавлен:
17.04.2019
Размер:
2.49 Mб
Скачать

1. Кинетическая энергия вращающегося тела.

Р ассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами , …. находящиеся на расстояние , … от оси вращения. Разным будут соответствовать, разные , … кинетическая энергия вращения всего тела сложится из энергий составляющих его частицу

т.к. всех частиц одинакова, то , … тогда

т.е.

Формула справедлива для тела. которое вращается вокруг неподвижной оси. Если тело катится (шар, колесо, и т.д.), то энергия движения складывается из энергии вращения и энергии поступательного движения, т.е. для тела массой , моментом инерции , скоростью поступательного движения и вращения

; ;

формула справедлива для произвольного движения, поскольку его можно разложить на совокупность вращения относительно оси инерции и поступательного движения.

3. Статистический смысл II начала термодинамики

Состояние макросистемы может быть охарактеризовано параметрами p, V, T, ν и др. В этом случае говорят, что задано макросостояние. Можно также задать состояние макросистемы более детально, через характеристики всех молекул (их скорости, энергии, координаты), тогда такое детальное описание называют микросостоянием.

Любое макросостояние системы может быть реализовано различными способами, или микросостояниями. Число различных микросостояний, соответствующих данному макросостоянию, называется статистическим весом макросостояния.

В качестве примера рассмотрим способы, которыми могут распределяться N = 4 молекулы с номерами №1, 2, 3, 4 между двумя половинами сосуда с газом без учета распределения Максвелла по скоростям, рис. . Вероятность того, что любая из молекул может находиться в половине А равна, очевидно, 1/2. Вероятность одновременного пребывания одной и другой молекул 1/2·1/2 = 1/22 как вероятность независимых событий, для трех молекул - 1/23 , четырех – 1/24. Вероятность любого размещения 4-х молекул также равна 1/24. Каждое размещение это микросостояние системы и вероятность каждого из них одинакова и равна 1/24. Все возможные распределения 4-х молекул по половинам А и В сосуда приведены в таблице.

А В

4

3

1

2

Рис.

Макросостояния

Способы реализации макросостояний

Число

способов, Ω

Обычная вероятность,

Р

А

В

А

№ мол.

В

№ мол.

0

4

-

1,2,3,4

1

1/16

1

3

1

2

3

4

2, 3, 4

1, 3, 4

1, 2, 4

1, 2, 3

4

4/16

2

2

1,2

1,3

1,4

2,3

2,4

3,4

3,4

2,4

2,3

1,4

1,3

1,2

6

6/16

3

1

1, 2, 3

1, 2, 4

1, 3, 4

2, 3, 4

4

3

2

1

4

4/16

4

0

1, 2, 3, 4

-

1

1/16

Как видно из таблицы, всего микросостояний – 16 = 24 =2N.

Под макросостоянием в данном случае будем понимать состояние, при котором в половине А сосуда: находится, например одна молекула (любая), а в половине В – три любые молекулы. Такие состояния реализуется 4-мя способами. Статистический вес данного макросостояния равен 4, а вероятность 4/16.

Макросостояние с 2-мя молекулами в каждой из половин, реализуется с помощью 6 микросостояний и его статистический вес Ω=6, а вероятность этого макростояния максимальна.

Предположим, что вначале все молекулы находились в половине А сосуда, затем некоторые из молекул, двигаясь беспорядочно, перейдут в В, это означает, что «газ» расширился. Далее макросостояние системы будет меняться случайным образом, но чаще будет реализоваться то из них, которому соответствует максимальное Ω, т.е. более вероятное. Может произойти так, что все четыре молекулы снова случайно окажутся в половине А, т.е. «газ», вначале расширившись, самопроизвольно сожмется. Т.е. процесс расширения оказался обратимым. Это может произойти довольно скоро для 4-х молекул из-за их высоких скоростей и быстрой смены состояний. Однако, вероятность такого события для 4х молекул и равна для N молекул, т.е. быстро уменьшается с ростом числа молекул. Если в сосуде N=100 молекул, то Р  10-30 .

Такова вероятность того, что газ самопроизвольно сожмется в одной половине сосуда. А вероятность того, что молекулы равномерно распределятся по объему, растет с N. Таким образом, отсюда следует важный вывод: предоставленная самой себе макросистема стремится перейти от менее вероятных состояний к более вероятным. Это является причиной необратимости т. процессов. Обратимый процесс, в принципе, возможен, но его вероятность ничтожно мала.

Таким образом, 2-ой закон термодинамики. указывает на необратимость перехода работы (механической энергии) в тепло, поскольку обратный переход – теплоты в работу означает переход от более вероятного состояния к менее вероятному.

Понятие необратимости процессов применимо только для макросистем, для небольшого числа частиц оно неприменимо. Четыре молекулы возможно соберутся в одной половине сосуда, т.е. «газ» самопроизвольно сожмется. При большом N в состоянии равновесия число молекул в обоих половинах сосуда можно считать одинаковым.

Б-27

  1. Преобразования Галилея.

  2. Сила Кориолиса.

  3. Энтропия и вероятность.

1. Преобразование Галилея

п озволяет определить величины при переходе от одной инерциальной системы к другой. движется со скоростью относительно . Взяв начало отсчета времени, момент когда системы совпадали запишем: соотношение между и одной и той же точки в и системе.

; ; ; ; ; (*)

Подразумевается, что длины отрезков и ход времени не зависит от состояния движения и одинаковы в системе и . Предположение об абсолютности пространства и времени лежит в основе Ньютоновской механики подтвержденной многочисленными экспериментами для . Продифференцировав, получим

- закон преобразования скоростей.

После второго дифференцирования т.е. ускорение не изменяется. Уравнения (*) называются преобразованием Галилея. Итого:

;

;

;

Принцип относительности Галилея

Значит ускорение какого-либо тела во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково. Тогда если одна из систем инерциальная, то другая также будет инерциальная .

А значит и силы действующие на тела в разных инерциальных системах одинаковы. Масса в Ньютоновской механике также одинакова во всех системах отсчета. Из сказанного следует вывод, что уравнение динамики не изменяется при переходе от одной инерциальной системы отсчета к другой или как говорят они инвариантны по отношению к преобразованию координат, соответствующему переходу от одной инерциальной системы отсчета к другой. Это значит что, с механической точки зрения все инерциальные системы отсчета эквивалентны, ни одной из них нельзя отдать предпочтение перед другими. Практически ни какими опытами нельзя установить находится ли данная ИСО в покое или движется равномерно и прямолинейно. Находясь, например, в вагоне поезда, движущегося равномерно и прямолинейно нельзя установить (не выглянув в окно) движется ли он или находится в состоянии покоя. Мяч в вагоне поезда получит такое же ускорение, как и на Земле при действии одинаковой силы. Свободное падение тел и другие механические процессы будут происходить в вагоне также как если бы он покоился. подобное наблюдение и опыты проводил еще Галилей, поэтому положение о том, что все механические явления в разных ИСО протекают одинаковым образом это называется принципом относительности Галилея.