Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы 3.doc
Скачиваний:
1
Добавлен:
16.04.2019
Размер:
208.9 Кб
Скачать

Вопрос 47

Принцип действия

Основу химических источников тока составляют два электрода (анод, содержащий окислитель, и катод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

в качестве восстановителя (на катоде) — свинец Pb, кадмий Cd, цинк Zn и другие металлы;

в качестве окислителя (на аноде) — оксид свинца(IV) PbO2, гидроксооксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;

в качестве электролита — растворы щелочей, кислот[1] или солей.

Классификация

По возможности или невозможности повторного использования химические источники тока делятся на:

  • гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций, невозможно перезарядить;

  • электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;

  • топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

По типу используемого электролита химические источники тока делятся на кислотные (например свинцово-кислотный аккумулятор, свинцово-плавиковый элемент), щелочные (например ртутно-цинковый элемент, ртутно-кадмиевый элемент, никель-цинковый аккумулятор, никель-кадмиевый аккумулятор) и солевые (например, марганцево-магниевый элемент, цинк-хлорный аккумулятор).

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

Вопрос 49 и 50

Гетерогенные равновесия в водных растворах характеризуются тем, что перенос частиц происходит через поверхность раздела по крайней мере двух сосуществующих фаз.

По своему характеру двухфазные гетерогенные равновесия достаточно многообразны, но здесь будут затронуты лишь некоторые из них, представляющие наибольший практический интерес и имеющие важное значение в аналитической, физической химии и в различных химических технологиях. К ним, в первую очередь, относятся следующие системы:

1. Твердая фаза (осадок) – жидкая фаза (насыщенный раствор вещества, находящегося в осадке). Эта система имеет большое значение, т.к. в химической практике часто приходится одни вещества отделять от других. Осаждение отделяемого вещества с последующим фильтрованием– один из наиболее простых и часто применяемых приемов разделения. Не менее важен и обратный процесс – переведение малорастворимых веществ в раствор. Это наиболее часто встречающийся в химии случай реакций образования и растворения осадков.

2. Твердая фаза (ионит) – жидкая фаза (раствор). Ионный обмен широко применяется для очистки воды от примесей (умягчение, обессоливание), а также для разделения веществ, близких по своим химическим свойствам, когда обычные методы химического разделения оказываются неэффективными. Здесь речь идет о ионном обмене на поверхности ионитов (катионитов и анионитов).

3. Жидкая фаза (раствор вещества в растворителе I) – жидкая фаза (раствор вещества в растворителе II). Этот случай реализуется тогда, когда некоторое вещество растворено в двух несмешивающихся друг с другом растворителях, причем в одном из них растворимость вещества больше, чем в другом. Практическое применение этого явления носит название экстракции. Экстракция является одним из наиболее применяемых методов разделения веществ как в промышленности, так и в химическом анализе.

2.1 Образование и растворение осадков

Равновесие, устанавливающееся между осадком малорастворимого вещества и его насыщенным раствором описывается уравнением:

АаВв(т) АаВв(р) .

В рассматриваемых ниже случаях речь идет, в основном, о малорастворимых гидроксидах и солях. Эти соединения представляют собой сильные электролиты – та их часть, которая перешла в раствор, практически полностью диссоциирована, а если в растворе содержатся недиссоциированные молекулы , то их концентрация ничтожна и, кроме того, в насыщенном растворе является величиной постоянной, поэтому рассматриваемое равновесие можно написать в виде

АаВв(т) (43)

Константа равновесия этого процесса называется произведением растворимости малорастворимого соединения

(44)

и при постоянной температуре является величиной постоянной.

Условие образования осадков непосредственно вытекает из выражения (44): если в растворе произведение реальных концентраций ионов и , рассчитанное по формуле (44), больше, чем произведение растворимости при данной температуре, то осадок выпадает. Если же произведение меньше численного значения произведения растворимости, то осаждения не происходит.

Равновесие (43) определяет полноту осаждения малорастворимого соединения: чтобы максимально полно вывести его из раствора в осадок, следует увеличивать концентрацию катиона и (или) аниона , добавляя в насыщенный раствор одноименные ионы и (или) в виде их растворимых соединений – это так называемый «эффект одноименного иона».

Если возникает необходимость растворить осадок , то следует уменьшать в его насыщенном растворе концентрации соответствующих ионов за счет вовлечения их в различные комплексы, либо путем изменения кислотности среды, либо, наконец, сочетая исходное равновесие (43) с окислительно-восстановительными взаимодействиями. Во всех перечисленных случаях в процесс «осаждение растворение» включаются донорно-акцепторные равновесия, которые могут существенно изменить растворимость соединения

Произведение растворимости (ПР, Ksp) — произведение концентрации ионов малорастворимого электролита в его насыщенном растворе при постоянной температуре и давлении. Произведение растворимости величина постоянная.