Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе экзамен.doc
Скачиваний:
7
Добавлен:
15.04.2019
Размер:
289.79 Кб
Скачать

15. Примеры самоорганизующихся систем (ячейки Бенара, реакция Жаботинского-Белоусова, модель «хищник-жертва»)

Если слой жидкости сильно нагреть, то возникает градиент температуры ΔТ между нижней и верхней поверхностями. Жидкость у нижней поверхности вследствие теплового расширения имеет меньшую плотность, чем вблизи верхней поверхности. Из-за наличия силы тяжести и архимедовой силы такая система оказывается неустойчивой, поскольку легкий нижний слой и тяжелый верхний должны поменяться местами. При небольших градиентах температуры движение не возникает и тепло передается только путем теплопроводности. Лишь при достижении критического значения градиента температуры возникает конвекционный поток, обладающий структурой в виде шестиугольных ячеек. Внутри ячеек жидкость поднимается вверх, а по краям опускается вниз. То есть наблюдается высокоорганизованная структура, возникающая в результате коллективного движения молекул жидкости. Внутренняя структура или самоорганизация поддерживается за счет поглощения отрицательной энтропии. Ячейки Бенара в миниатюре воспроизводят условия, необходимые для существования жизни на Земле. Земля получает высококачественную энергию от Солнца, перерабатывает ее, что сопровождается ростом энтропии, и выбрасывает энергию в химическое пространство вместе с наработанной энтропией.

16. Термодинамическая система. Понятие состояния. Равновесные и не равновесные состояния.

Известно, что для широкого класса необратимых явлений потоки являются линейными функциями термодинамических сил. Под термодинамическими силами понимают градиент соответствующих величин, например, в явлениях переноса.

Ji = ∑Lijxj. Коэффициенты Lij называются феноменологическими или кинетическими коэффициентами. Они могут быть любыми функциями параметров состояния (температуры, давления, состава и т.д.), однако они не зависят от Ji и xj.

В нелинейной термодинамике необратимых процессов в термодинамических уравнениях движения нельзя ограничиваться линейной связью, нужно учитывать члены порядка выше первого и принимать во внимание зависимость кинетических коэффициентов от термодинамических сил.

Процессы самоорганизации в химических системах изучались бельгийскими учеными во главе с Пригожиным. Модели, предложенные им, легли в основу новой, неравновесной термодинамики. Изучение открытых систем – одно из перспективных направлений термодинамики завтрашнего дня. Заслугой неравновесной термодинамики является установление того факта, что самоорганизация является общим свойством открытых систем. Неравновесность служит источником упорядоченности.

17. Первое и второе начало термодинамики. Энтропия как функция состояния. Первое начало термодинамики

Существует два способа изменения состояния системы: к ней подводится тепло Q и над ней совершается работа А. В общем случае, переход системы из одного состояния в другое связан с сообщением системе некоторого количества теплоты ΔQ и совершением системой работы ΔА над внешними телами.

Первое начало термодинамики утверждает, что если система совершает термодинамический цикл (то есть возвращается в исходное состояние), то полное количество теплоты, сообщенное системе на протяжении цикла, равно совершенной ею работе.

Другая формулировка: если к системе подводится тепло Q и над ней производится работа А, то энергия системы возрастает до величины U = Q + A.

Первое начало термодинамики есть выражение закона сохранения энергии для систем, в которых существенную роль играют тепловые процессы. Теплота и работа энергетически эквивалентны и измеряются в одних и тех же единицах. Энергия U является внутренней энергией и функцией состояния системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]