Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Подземная гидромеханика 1ч.doc
Скачиваний:
194
Добавлен:
08.12.2018
Размер:
31.58 Mб
Скачать

7.3. Точные решения для притока упругой жидкости к прямолинейной галерее и к точечному стоку (источнику) на плоскости

За прямолинейную галерею можно принять любую прямолинейную изобару. Пусть в начальный момент t=0 первоначальное пластовое давление было всюду одинаковым Рк. Пусть на галерее (х=0) давление мгновенно упало до величины Рс. При этом в пласте тут же происходит перераспределение давления. Требуется найти функцию распределения давления Р=Р (х, t). Для этого необходимо решить уравнение для рассматриваемого одномерного прямолинейного движения

. (7.30)

Начальные и граничные условия математически записываются в форме

,

. (7.31)

Решение задачи (7.30), (7.31) хорошо известно и приведено, например, в [5, 6]. Оно имеет следующий вид:

(7.32)

(7.33)

(7.34)

Здесь – интеграл вероятности или интеграл Гаусса. Он табулирован и имеется в справочниках. Зная æ и t, подсчитывают , затем по таблицам или графикам определяют интеграл и находят, таким образом, давление Р в любой точке пласта в заданное время.

Далее рассмотрим задачу о притоке упругой жидкости к точечному стоку (источнику) на плоскости, т. е. в неограниченном пласте. При этом требуется решить уравнение Лапласа, которое в цилиндрических координатах запишется в виде

(7.35)

Имеется несколько методов решения уравнения (7.35). Например, метод Фурье, когда решение ищется в виде произведения независимых функций, метод сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению [6] и др.

В конечном виде решение уравнения (7.35) для притока упругой жидкости к стоку на плоскости представляется выражением:

(7.36)

где

(7.37)

f0 – параметр Фурье.

Интегральная показательная функция табулирована и имеется в српавочниках.

Формула (7.36) является основной формулой теории упругого режима пласта, которая нашла широкое применение в практике разработки нефтяных месторождений.

Для малых значений аргумента f0 интегральная показательная функция приближенно может быть вычислена элементарно по формуле

(7.38)

Скорость фильтрации на расстоянии r определяется по формуле

(7.39)

В случае кругового пласта конечных размеров точные решения выражаются громоздкими в бесконечных рядах функциями Бесселя. Графики и таблицы для численных расчетов приведены Чатасом и Маскетом.

Заметим, что формула (7.36) справедлива лишь для точечного стока, т. е. для r=0. Однако, как показали анализы, этой формулой можно пользоваться не только для обычных скважин, но и для «укрупненных», радиус которых исчисляется десятками метров. Ограничение в применении формулы (7.36) может быть лишь для времени t в долях секунды от момента пуска скважины.

На рис. 7.3 изображены пьезометрические кривые для различных моментов времени после пуска скважины. Процесс распределения давления в пласте после пуска можно характеризовать следующим образом. Вокруг скважины, непрерывно увеличиваясь, образуется область, в пределах которой давление распределяется так, как и при установившемся движении. Такой процесс называется квазиустановившимся. В пределах этой области пьезометрические кривые являются кривыми логарифмического типа (на рисунке они показаны жирными отрезками), а углы наклона касательных к разным кривым для любой точки пласта (см. рис. 7.3) (такой точкой является забой скважины) одинаковы.

Рис.7.3. Пьезометрические кривые с участками квазиустановившегося