Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UTF-8''%D0%90%D0%BD%D0%B0%D1%82%D0%BE%D0%BC%D0%....doc
Скачиваний:
63
Добавлен:
07.12.2018
Размер:
983.55 Кб
Скачать

Миелинизация в цнс

Обеспечивается олигодендроцитами. Каждый олигодендроглиоцит образует несколько «ножек», каждая из которых оборачивает часть какого-либо аксона. В результате один олигодендроцит связан с несколькими нейронами. Перехваты Ранвье здесь шире, чем на периферии.

Миелинизация в периферической нс

Обеспечивается Шванновскими клетками. Каждая Шванновская клетка формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки отдельного аксона. Цитоплазма шванновской клетки остается только на внутренней и наружной поверхностях миелиновой оболочки. Между изолирующими клетками также остаются перехваты Ранвье, которые здесь уже, чем в ЦНС.

Так называемые «немиелинизированные» волокна все равно изолированы, но по несколько иной схеме. Несколько аксонов частично погружены в изолирующую клетку, которая не смыкается вокруг них до конца.

  1. Межнейрональные связи. Синапсы, их строение и функции.

Контакты между нейронами (межнейрональные связи) получили название синапсов.

Межнейрональный синапс: 1 — нервное волокно (аксон); 2 — синаптические пузырьки; 3 — синаптическая щель; 4 — хеморецепторы постсинаптической мембраны; 5 — постсинаптическая мембрана; 6 — синаптическая бляшка; 7 — митохондрия.

Си́напс (от греч. обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

В зависимости от механизма передачи нервного импульса различают:

  • химические;

  • электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

  • смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Типичный синапс — аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

  1. Типы синапсов (химические и электрические). Механизм передачи.

  • электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе  — 3,5 нм (обычное межклеточное — 20 нм)

  • Химические.

Рассмотрим, как осуществляется химическая, синаптическая передача. Схематично это выглядит так: импульс возбуждения, достигает пресинаптической мембраны нервной клетки (дендрита или аксона), в которой содержатся синаптические пузырьки, заполненные особым веществом - медиатором (от латинского «Media» - середина, посредник, передатчик). Пресинаптическая мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция

(Са2+) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель.

Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния

постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецептор активируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Некоторые из них мне хотелось бы указать. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение. Указав, на мой взгляд, функциональные основные свойства химической синаптической передачи, рассмотрим, как же осуществляется процесс высвобождения медиатора, а так же опишем наиболее известные из них.

  1. Нервно-мышечные соединения.

Нервно-мышечный синапс (мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне. Зона контакта двигательного окончания и мышечного волокна, которое иннервируется им. Каждое мышечное волокно иннервируется веточкой аксона двигательного нейрона, который, оканчиваясь на волокне, образует двигательную концевую пластинку. Структура, соединяющая нервное окончание и мышечное волокно - аксо-мышечный синапс - состоит из пресинаптической мембраны (плазматическая мембрана нервного окончания) и постсинаптической мембраны (плазматическая мембрана мышечного волокна), разделенных синаптической щелью, куда из нервного окончания выделяется нейромедиатор, вызывая сокращение мышцы.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

Электронная микрофотография среза нервномышечного синапса. Т - окончание аксона, М - мышечное волокно. Стрелка указывает на складки базальной мембраны. Шкала 0.3 мкм[1]

Двигательные нервные окончания в гладкой мышечной ткани построены проще — безмиелиновые пучки аксонов проникают между глиоцитами к пласту гладких мышц и образуют булавовидные расширения, которые содержат холинергические и адренергические пузырьки.

  1. Нейромедиаторы, их строение и функции, образование и метаболизм. Классификация нейромедиаторов.

Нейромедиа́торы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Список некоторых известных веществ-нейромедиаторов:

Аминокислоты:

  • ГАМК

  • Глицин

  • Глутаминовая кислота

Катехоламины:

  • Адреналин

  • Норадреналин

  • Дофамин

Другие моноамины:

  • Серотонин

  • Гистамин

А также:

  • Ацетилхолин

  • Анандамид

  • Аспартат

  • АТФ

  • Вазоактивный интестинальный пептид

  • Глутамат

  • Окситоцин

  • Таурин

  • Триптамин

  • Эндоканнабиноиды

  • N-ацетиласпартилглутамат

Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объем синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

  1. Нейроглия. Источник онтогенетического развития нейроглии.

Глиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объёма ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.

Нейроглия является клеточным клеем нервной системы. Все клетки делятся на микроглию и макроглию.

Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением.

Макроглия представлена 3 видами клеток:

  1. Астроциты- представляют собой опорный аппарат нервной системы. Подразделена на два вида: волокнистые и плазматические. Волокнистые лежат в белом веществе, имеют длинные, слабоветвящиеся отростки, которые на поверхности кровеносных сосудов образуют разграничительные мембраны. Плазматические залегают в сером веществе, имеют крупное ядро и несколько ветвящихся отростков, участвуют в обменных процессах. Наиболее активны в условиях паталогии.

  2. Эпендимоциты –выстилают все желудочки мозга и спинномозговой канал. Имеют реснички способствуют продвижению жидкости. Некоторые клетки обладают секреторной активностью, при этом гранулы секрета попадают в спинномозговую жидкость. Особенностью является наличие крупных метохондрий в цитоплазме, вкропление жира и пигментов.

  3. Олигодендроглиоциты –выполняют опорную функцию, входят в состав оболочек нервных клеток, участвуют в процессах передачи и восприятия нервного импульса, а также в обменных процессах.

  1. Макроглия. Особенности структуры и функции разных видов макроглии (астроциты и олигодендроциты).

Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением.

Макроглия представлена 3 видами клеток:

  1. Астроциты- представляют собой опорный аппарат нервной системы. Подразделена на два вида: волокнистые и плазматические. Волокнистые лежат в белом веществе, имеют длинные, слабоветвящиеся отростки, которые на поверхности кровеносных сосудов образуют разграничительные мембраны. Плазматические залегают в сером веществе, имеют крупное ядро и несколько ветвящихся отростков, участвуют в обменных процессах. Наиболее активны в условиях паталогии.

  2. Эпендимоциты –выстилают все желудочки мозга и спинномозговой канал. Имеют реснички способствуют продвижению жидкости. Некоторые клетки обладают секреторной активностью, при этом гранулы секрета попадают в спинномозговую жидкость. Особенностью является наличие крупных метохондрий в цитоплазме, вкропление жира и пигментов.

  3. Олигодендроглиоциты –выполняют опорную функцию, входят в состав оболочек нервных клеток, участвуют в процессах передачи и восприятия нервного импульса, а также в обменных процессах.

Астроцит — тип нейроглиальной клетки. Происходит из спонгиобластов, развивающихся в клетке, имеющие множество отростков. Длинные извитые отростки переплетаются с отростками нейронов. Значительное число отростков астроцитов представляют собой «ножки», плотно прилегающие к капиллярам и покрывающие собой почти всю поверхность сосуда. Астроциты, расположенные в местах концентрации тел нейронов (серое вещество), образуют больше отростков, чем астроциты в белом веществе. Таким образом, астроциты – это клетки, располагающиеся между капиллярами и телами нейронов и осуществляющие транспорт веществ из крови в нейроны и обратно. Кроме того, астроциты связывают с кровеносным руслом спинномозговую жидкость.

Функции

  • Опорная и разграничительная функция — поддерживают нейроны и разделяют их своими телами на группы (компартменты). Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в цитоплазме астроцитов.

  • Трофическая функция — регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до плазматической мембраны нейронов.

  • Участие в росте нервной ткани: астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития. Рост нейронов возможен как редкое исключение и во взрослом организме в обонятельном эпителии, где нервные клетки обновляются раз в 40 дней.

  • Участие в нейрональной миграции: в ростральном миграционном тракте астроциты образуют глиальные трубки, по которым нейробласты, образованные при взрослом нейрогенезе, продвигаются в обонятельную луковицу.

  • Гомеостатическая функция — обратный захват медиаторов и ионов калия. Извлечение глутамата и ионов калия из синаптической щели после передачи сигнала между нейронами.

  • Гематоэнцефалический барьер — защита нервной ткани от вредных веществ, способных проникнуть из кровеносной системы. Астроциты служат специфическим «шлюзом» между кровеносным руслом и нервной тканью, не допуская их прямого контакта.

  • Модуляция кровотока и диаметра кровеносных сосудов — астроциты способны к генерации кальциевых сигналов в ответ на нейрональную активность. Астроглия участвует в контроле кровотока, регулирует высвобождение некоторых специфических веществ,

  • Регуляция активности нейронов — астроглия способна высвобождать нейропередатчики.

  • Регуляция медленноволновой активности во время сна.

Виды астроцитов

Астроциты делятся на фиброзные (волокнистые) и плазматические. Фиброзные астроциты располагаются между телом нейрона и кровеносным сосудом и преимущественно находятся в белом веществе, характеризуются высоким содержанием глиального фибриллярного кислого белка, а плазматические — между нервными волокнами в сером веществе.

Олигодендроциты, или олигодендроглиоциты — клетки нейроглии. Это — наиболее многочисленная группа глиальных клеток. Олигодендроциты локализуются в центральной нервной системе.

Олигодендроциты — клетки овальной формы с отростками. Их основная функция — миелинизация аксонов ЦНС. Каждый олигодендроглиоцит имеет множество отростков, каждый из которых оборачивает собой часть какого-либо аксона. В результате один олигодендроцит оказывается связан с несколькими нейронами. Тем самым обеспечивется изоляция аксона, и, как следствие ее — возможность быстрого сальтаторного проведения нервных импульсов (по перехватам Ранвье, остающимся между изолированными участками).

Олигодендроциты выполняют также трофическую функцию по отношению к нейронам, принимая активное участие в их метаболизме.

Олигодендроциты имеют то же происхождение, что и астроциты. По размерам они меньше, чем астроциты и имеют меньше отростков. Основная масса олигодендроцитов располагается в белом веществе мозга и ответственна за образование миелина. Эти олигодендриты обладают длинными отростками. Олигодендроциты, расположенные в периферической нервной системе, называются Шванновскими клетками. Те олигодендроциты, которые находятся в сером веществе, располагаются, как правило, вокруг тел нейронов, плотно прилегая к ним. Поэтому их называют клетками-сателлитами. Они характеризуются наличием коротких отростков.

  1. Строение и функции эпендимы.

Эпе́ндима(эпендимоциты) — эпителиоподобные клетки нейроглии, выстилающие все желудочки мозга и спинномозговой канал. Эпендимоциты выполняют в центральной нервной системе опорную, разграничительную и секреторную функции. Тела эпендимоцитов вытянуты, на свободном конце — реснички (теряемые во многих отделах мозга после рождения особи). Биение ресничек способствует циркуляции спинномозговой жидкости. Со стороны эпендимоцита, обращенной внутрь тканей мозга, от клетки отходит длинный, ветвящийся отросток.

Некоторые эпендимоциты выполняют секреторную функцию, участвуя в образовании и регуляции состава цереброспинальной жидкости. Цитоплазма эпендимоцитов содержит развитую эргастоплазму и различные включения.

Некоторые клетки обладают секреторной активностью. При этом гранулы секрета попадают в спинномозговую жидкость. Особенность наличие крупных митохондрий в цитоплазме, в кропление жира и пигментов.

  1. Строение, функции и происхождение микроглии.

Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением. В ходе воспалительного процесса микроглия активируется, причем форма клеток претерпевает сильные изменения — в активированном состоянии они выпускают многочисленные отростки, напоминая амёбы. Микроглия распознает различные агенты в своем окружении при помощи специализированных мембранных рецепторов. Микроглия также подавляет патогены при помощи выделения цитотоксических веществ. Показано, что в культуре клетки микроглии (как и другие фагоциты в ходе «респираторного взрыва») выделяет большие количества перекиси водорода и NO. Оба эти вещества могут убивать нейроны. Микроглия выделяет также специфические протеазы и цитокины (например, интерлейкин-1, который может вызывать демиелинизацию аксонов). Наконец, микроглия может повреждать нейроны при выделении избытков глутамата, при действии которого на NMDA-рецепторы возникает явление эксайтотоксичности. Таким образом, чрезмерная активация микроглии может приводить к патологическим процессам и, в частности, к гибели нейронов, что, как полагают, является одним из патологических механизмов нейродегенеративных болезней, таких как болезнь Альцгеймера, болезнь Паркинсона, деменция, вызванная СПИДом, и некоторых других. Клетки микроглии происходят из мезодермы. Они отличаются небольшими размерами. Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе. При раздрожении форма клетки меняется, отростки втягиваются внутрь и клетка округляется.

20. Гематоэнцефалический и нейроликворный барьер: функции и строение.

Гема́то-энцефали́ческий барье́р (ГЭБ) (от др.-греч. αἷμα, род. п. αἵματος  — «кровь» и др.-греч. ἐγκέφαλος — «головной мозг») — физиологический барьер между кровеносной системой и центральной нервной системой. ГЭБ имеют все позвоночные.

Главная функция ГЭБ — поддержание гомеостаза мозга. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. ГЭБ выполняет функцию высокоселективного фильтра, через который из кровеносного русла в мозг поступают питательные вещества, а в обратном направлении выводятся продукты жизнедеятельности нервной ткани.

Вместе с тем, наличие ГЭБ затрудняет лечение многих заболеваний центральной нервной системы, так как он не пропускает целый ряд лекарственных препаратов.