Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция_Моделирование.doc
Скачиваний:
10
Добавлен:
04.12.2018
Размер:
71.68 Кб
Скачать

Типы информационных моделей

1. По фактору времени - статические и динамические

Статические - модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). В каждый момент времени система находится в определенном состоянии, который характеризуется составом элементов, значениями их свойств, величиной и характером взаимодействия между элементами и т. д. В физике примером статистических информационных моделей являются модели, описывающие простые механизмы, в биологии - модели строения растений и животных, в химии - модели строения молекул и кристаллических решеток, в астрономии - модель Солнечной системы и т. д.

Динамические - модели, описывающие процессы изменения и развития систем во времени. Состояние систем изменяется во времени, то есть происходят процессы изменения и развития систем. Так, планеты движутся, изменяется их положение относительно Солнца и друг друга; Солнце, как и любая другая звезда, развивается, меняются ее химический состав, излучение и т. д. В физике динамические информационные модели описывают движение тел, в биологии - развитие организмов или популяций животных, в химии - процессы происхождения химических реакций и т. д.

  1. Структурные, функциональные, структурно-функциональные

Структурные служат для изучения внутреннего состояния объекта, того из чего он «сделан» (например, текст – это система элементов). В тех случаях, когда необходимо воспринять, осмыслить и переработать большой объем информации, такую информацию нужно структурировать, т.е. выделить в ней элементарные составляющие и их взаимосвязи. Структура представляет собой упорядоченную систему данных. Наиболее простыми информационными структурами являются таблицы, схемы, графы. Структурная модель объекта составляется для того, чтобы как можно более наглядно представить составные части и их связи. Простым примером табличного структурирования информации является школьное расписание уроков.

Основными структурными моделями являются табличная, сетевая и иерархическая.

Табличные – объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках). В табличной информационной модели элементы информации размещаются в отдельных ячейках. С помощью таблиц могут быть выражены как статические, так и динамические информационные модели. Широко известно табличное представление математических функций, статистических данных, расписаний поездов и самолетов, уроков и т. д. В общем случае таблица не дает представления о каких- либо закономерностях, однако бывают и исключения. Великий русский химик Д. И. Менделеев, расположив для удобства химические элементы в таблицу по возрастанию атомных весов, открыл периодический закон, который оказал решающее влияние на развитие химии и физики. Табличные информационные модели проще всего строить и исследовать на компьютере с помощью электронных таблиц и систем управления базами данных.

Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня. В биологии весь животный мир рассматривается как иерархическая система(тип, класс, отряд, семейство, род, вид), в информатике используется иерархическая файловая система и т.д. В иерархической информационной модели объекты распределены по уровням, причем элементы нижнего уровня входят в состав одного из элементов более высокого уровня. Так, для описания исторического процесса смены поколений семьи используются динамические информационные модели в форме генеалогического дерева.

Сетевые – применяют для отражения систем, в которых связи между элементами имеют сложную структуру. Сетевые информационные модели применяются для отражения таких систем, в которых связь между элементами имеет сложную структуру. Например, различные части глобальной компьютерной сети Интернет (американская, европейская, российская и т. д.) связаны между собой высокоскоростными линиями связи.

Функциональные служат для изучения поведения объекта (модели типа «вход-выход»), структурно-функциональные служат и для изучения внутреннего состояния объекта и для изучения его поведения.

4. Детерминированные и стохастические (по характеру отражения причинно-следственных связей)

Этапы моделирования:

1. Постановка задачи: описание задачи, цель моделирования, формализация задачи, математическая модель.

2. Разработка модели: информационная модель, компьютерная модель

3. Компьютерный эксперимент – план эксперимента, проведение исследования

4. Анализ результатов моделирования

На начальном этапе моделирования выделяются существенные признаки изучаемого объекта и дается развернутое содержательное описание связи между ними (системный анализ), то есть осуществляется неформальная постановка задачи. Следующим важным этапом моделирования является формализация содержательного описания связей между выделенными признаками с помощью некоторого языка кодирования: языка схем, языка математики и т.д. (“перевод“ полученной структуры в какую- либо заранее определенную форму).

Формализация – этап перехода от содержательного описания связей между выделенными признаками объекта (словесного или в виде текста) к описанию, использующему некоторый язык кодирования (языка схем, языка математики и т. д.). Формализация - процесс построения информационных моделей с помощью формальных языков. Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике, который позволяет описывать функциональные зависимости между величинами. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. По сути, формализация – это первый и очень важный этап процесса моделирования. Примером неформального описания модели является кулинарный рецепт или словесное описание модели парусника, или словесная формулировка второго закона Ньютона.

В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, результатом формализации моделей должно быть программное средство. Поэтому принципы формализации можно сформулировать в следующем виде:

  • разработка неформального описания модели (словесное описание существенных для рассматриваемой задачи характеристик изучаемого объекта и связей между ними);

  • составление формализованного описания на некотором языке кодирования (с использованием математических соотношений и текстов);

  • реализация формализованного описания в виде программы на некотором языке программирования.

Например, формула F=m*a является формализованным описанием второго закона Ньютона.

Алгоритм представляет собой конечную упорядоченную совокупность предписаний исполнителю, четко и однозначно определяющих процесс преобразования исходной информации в конечный результат. Алгоритмы образуют важнейший класс информационных процессов. Каждый шаг алгоритма определяется только начальной и конечной информацией, все команды алгоритма можно выполнять формально, или автоматически (без непосредственного участия человека).

Информационная модель — это модель, содержащая целенаправленно отобранную и представленную в некоторой форме наиболее существенную информацию об объекте. Информационный объект — это совокупность логически связанной информации.

Имитационным моделированием называют изучение физических явлений и процессов с помощью компьютерных моделей.

Выбор вида модели зависит от цели исследования объекта.

Компьютерный эксперимент состоит из последовательности этапов:

построение математической модели - выбор численного метода - разработка алгоритма - исполнение программы на компьютере, анализ решения.

Этапы разработки моделей:

  1. Построение описательной информационной модели.

  2. Создание формализованной модели.

  3. Преобразование формализованной модели в компьютерную.

  4. Проведение компьютерного эксперимента.

  5. Анализ полученных результатов и корректировка исследуемой модели.