Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Seminarskie_zanyatia_po_fizike.doc
Скачиваний:
88
Добавлен:
26.11.2018
Размер:
2.71 Mб
Скачать

Семинар № 4 биоэнергетика и термодинамика биологических систем.

Литература:

2. Раздел VII ; 3. с.8-19; 5, Глава I; 6. с.54-66; 7. Глава 10, с. 163-184; 8. Глава 11; 9. с.74-78; 10. с.13-57; 11. Лекция 6; 12. с. 14- 21.

Вопросы для самоподготовки.

1.Понятия: работа, энергия, теплоемкость. Виды энергии в организме. Энергия химических связей.

2.Термодинамическая система. Типы термодинамических систем. Внутренняя энергия системы.

3. Первое начало термодинамики.

4.Свободная и связанная энергии. Обратимые и необратимые процессы.

5.Второе начало термодинамики (качественные формулировки).

6.Энтропия. Физический смысл энтропии (термодинамический и статистический). Второе начало термодинамики (количественная формулировка).

7.Термодинамические функции. Уравнение Гельмгольца. Уравнение Гиббса.

8.Применение первого начала термодинамики в биологии. Тепловой баланс организма. Химическая и физическая терморегуляции. Эффективность основных биологических процессов.

9.Применение второго начала термодинамики в биологии. Уравнение Пригожина. Негэнтропия.

10.Стационарное состояние биологической системы. Отличие стационарного состояния от равновесного. Теорема Пригожина.

11. Расширенный принцип Ле-Шателье. Адаптация и аутостабилизация живых систем. Типы перехода из одного стационарного состояния в другое.

Мотивация цели.

Процессы энергообеспечения организма за счет внешних энергетических ресурсов составляет предмет исследования биоэнергетики. Разработкой биоэнергетических проблем занимаются статистическая физика и термодинамика. Статистическая физика изучает механизмы энергетических процессов, протекающих в организме на молекулярном и субмолекулярном уровнях. Биологическая термодинамика исследует биологические процессы на основе общих законов превращения энергии без детального изучения их молекулярных механизмов (на макроскопическом уровне).

Применение термодинамики в биологии позволяет рассчитать энергетические превращения в живом организме и в отдельных системах и органах. Например: при мышечном сокращении, проведении нервных импульсов, осмотических процессах, при изучении активного и пассивного транспорта веществ через биологические мембраны, возникновении и распространении биопотенциалов и др..

Цель занятия: изучить основные понятия и положения термодинамики; научиться применять термодинамический метод к изучению биологических объектов (систем).

Подготовка к практическому занятию.

Изучить по рекомендованной литературе, уметь объяснять и пояснять примерами следующие вопросы:

I. Основные понятия.

Термодинамика, предмет и метод. Термодинамические системы (изолированные, замкнутые, открытые). Параметры системы: интенсивные (давление, температура и т.д.) и экстенсивные (объем, энергия, энтропия, энтальпия и др.)

II. Основные законы термодинамики.

1.Первое начало термодинамики.

2.Второе начало термодинамики. Качественные формулировки (Клаузиуса и Томсона). Количественная формулировка. Энтропия и ее физический смысл (термодинамический и статистический).

3.Термодинамические функции (потенциалы): свободная и связанная энергии, внутренняя энергия, свободные энергии по Гельмгольцу и по Гиббсу, энтальпия.

III. Применение первого и второго начал термодинамики в биологии.

1.Тепловой баланс организма. Температурный гомеостазис. Энерготраты организма.

2.Эффективность основных биоэнергетических процессов.

3.Физиологическая калориметрия (прямая и непрямая).

IV. Стационарное состояние и его применение к биологическим системам.

1. Производство энтропии при необратимых процессах. Уравнение Пригожина для открытых систем. Сопряжение процессов. Негэнтропия.

2. Стационарное и равновесное состояния, их отличия. Энтропия, свободная энергия, производство энтропии в стационарном и равновесном состояниях. Теорема Пригожина.

3. Расширенный принцип Ле-Шателье. Адаптация и аутостабилизация живых систем. Типы перехода из одного стационарного состояния в другое.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]