Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пример_курсовой_2.doc
Скачиваний:
7
Добавлен:
25.11.2018
Размер:
222.21 Кб
Скачать

2. Сила тяжести и ускорение свободного падения

2.1 Сила тяжести

Частным, но крайне важным для нас видом силы всемирного тяготения является сила притяжения тел к Земле. Эту силу называют силой тяжести. Согласно закону всемирного тяготения, она выражается формулой

(2)

где т – масса тела, М – масса Земли, R – радиус Земли, h – высота тела над поверхностью Земли. Сила тяжести направлена вертикально вниз, к центру Земли.

*Более точно, помимо этой силы, в системе отсчета, связанной с Землей, на тело действует центробежная сила инерции , которая возникает из-за суточного вращения Земли, и равна , где m – масса тела; r – расстояние между телом и земной осью. Если высота тела над поверхностью Земли мала по сравнению с ее радиусом, то , где R – радиус Земли,  – географическая широта, на которой находится тело (рис. 5). С учетом этого .

Рис. 5.

Силой тяжести называется сила, действующая на любое находящееся вблизи земной поверхности тело.

Она определяется как геометрическая сумма действующей на тело силы гравитационного притяжения к Земле и центробежной силы инерции , учитывающей эффект суточного вращения Земли вокруг собственной оси, т. е. Направление силы тяжести является направлением вертикали в данном пункте земной поверхности.

Но величина центробежной силы инерции очень мала по сравнению с силой притяжения Земли (их отношение составляет примерно 3∙10–3), то обычно силой пренебрегают. Тогда .

2.1 Ускорение свободного падения

Сила тяжести сообщает телу ускорение, называемое ускорением свободного падения. В соответствии со вторым законом Ньютона

С учетом выражения (2) для модуля ускорения свободного падения будем иметь

(3)

На поверхности Земли (h = 0) модуль ускорения свободного падения равен

а сила тяжести равна

Модуль ускорения свободного падения, входящего в формулы, равен приближенно 9,8 м/с2.

Из формулы (3) видно, что ускорение свободного падения не зависит от массы тела. Оно уменьшается при подъеме тела над поверхностью Земли: ускорение свободного падения обратно пропорционально квадрату расстояния тела от центра Земли.

Однако если высота h тела над поверхностью Земли не превышает 100 км, то при расчетах, допускающих погрешность ≈ 1,5%, этой высотой можно пренебречь по сравнению с радиусом Земли (R = 6370 км). Ускорение свободного падения на высотах до 100 км можно считать постоянным и равным 9,8 м/с2.

И все же у поверхности Земли ускорение свободного падения не везде одинаково. Оно зависит от географической широты: больше на полюсах Земли, чем на экваторе. Дело в том, что земной шар несколько сплюснут у полюсов. Экваториальный радиус Земли больше полярного на 21 км.

Другой, более существенной причиной зависимости ускорения свободного падения от географической широты является вращение Земли. Второй закон Ньютона справедлив в инерциальной системе отсчета. Такой системой является, например, гелиоцентрическая система. Систему же отсчета, связанную с Землей, строго говоря, нельзя считать инерциальной. Земля вращается вокруг своей оси и движется по замкнутой орбите вокруг Солнца.

Вращение Земли и сплюснутость ее у полюсов приводит к тому, что ускорение свободного падения относительно геоцентрической системы отсчета на разных широтах различно: на полюсах gпол 9,83 м/с2, на экваторе gэкв 9,78 м/с, на широте 45° g ≈ 9,81 м/с2. Впрочем, в наших расчетах мы будем считать ускорение свободного падения приближенно равным 9,8 м/с2.

Из-за вращения Земли вокруг своей оси ускорение свободного падения во всех местах, кроме экватора и полюсов, не направлено точно к центру Земли.

Кроме того, ускорение свободного падения зависит от плотности пород, залегающих в недрах Земли. В районах, где залегают породы, плотность которых больше средней плотности Земли (например, железная руда), g больше. А там, где имеются залежи нефти, g меньше. Этим пользуются геологи при поиске полезных ископаемых.