Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА_6_ФИН.doc
Скачиваний:
58
Добавлен:
14.11.2018
Размер:
441.86 Кб
Скачать

24

Глава 6. Численные методы алгебры. Решение систем лИнейных уравнений

Линейные уравнения являются наиболее употребительными в математическом моделировании при построении зависимостей между параметрами моделей. Это обусловлено тем, что линейная зависимость параметров наиболее наглядна, имеет самое простое математическое выражение, для которого достаточно полно разработана теория и практические методы решения. Поэтому зачастую на практике при решении нелинейных зависимостей используют линеаризацию их в области искомых значений неизвестных для упрощения методов исследования.

Методы решения систем линейных уравнений - один из основных разделов численных методов алгебры.

Рассмотрим основные понятия теории линейных уравнений и систем линейных уравнений, а также их методы решения с оценкой сложности соответствующих алгоритмов.

6.1. Линейные уравнения. Теоретическое и практическое решения линейных уравнений с одним неизвестным

Линейными относительно неизвестных х1, х2,... хn, называют алгебраические уравнения, содержащие неизвестные только в первое степени. Коэффициенты при неизвестных называют линейными, все остальные коэффициенты - свободными.

Пример 1 линейных уравнений:

1) ах + by = c; - линейное уравнение относительно неизвестных х,y, в котором а и b - линейные коэффициенты, c - свободный коэффициент;

2) 1,2х1 + 4 + 5,08х2 - 13,17х3 - 4,38х1 + 31,75х2 + 1,3 = 3,8х3 - 14,61; - линейное уравнение относительно неизвестных х1,х2,х3, вещественными линейными и свободными коэффициентами.

Каноническим называют такой вид линейных уравнений, при котором все слагаемые, содержащие неизвестные (х1, х2,... хn), находятся в левой части и выполнено приведение коэффициентов при неизвестных (а1, а2,... аn), а приведенный свободный коэффициент (b) стоит в правой части уравнения:

а1х1+ а2х2+...+ аnхn = b. (6.1)

В примере 1 в каноническом виде представлено уравнение 1), уравнение 2) - нет.

Линейными уравнениями с одним неизвестным в каноническом виде называют зависимости типа

ах = b, (6.2)

где х- неизвестное, a, b - постоянные коэффициенты.

Теоретическим достаточным условием существования и единственности решения линейного уравнения (6.2) с одним неизвестным является условие

a  0. (6.3)

При его выполнении решение (6.2) всегда существует, единственно и равно:

х = b / а. (6.4)

Теоретическое достаточное условие (6.3) выводится для идеального представления числовых коэффициентов уравнения и не учитывает реальный характер вычислений - как при ручном, так и при машинном расчетах. На практике из-за наличия погрешностей при задании исходных данных, а также погрешностей расчета практическое достаточное условие существования и единственности решения линейного уравнения (6.2) формулируют в виде:

a   , (6.5)

где  > 0 - заранее задаваемое положительное число, задающее граничную величину предельной абсолютной погрешности линейного коэффициента a, при которой он уже не считается равным или близким к нулю. Если условие (6.5) выполнено, то решение совпадает с (6.4).

Вопросы для проверки знаний.

1. Какой вид уравнений называют линейным ?

2. Какую форму имеют линейные уравнения канонического вида ?

3. В какой форме формулируются теоретическое и практическое условия существования решения линейного уравнения с одним неизвестным и чем вызвано их различие ?

Практические задания.

1.Привести к каноническому виду линейные уравнения:

a) х + y - 1 + 2x - 2y +3 = y + z + 10;

б) 0,2х1 +2,8х2 + 5,1х3 - 2,2 + 8,1х3 + 1,8х1 + 9,0 = 8,1х1 - 7,5х3 + 6,5;

в) уравнение 2) примера 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]