Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОРОТКИЙ ВАРИАНТ 2010.doc
Скачиваний:
16
Добавлен:
08.11.2018
Размер:
649.73 Кб
Скачать

ВВЕДЕНИЕ.

Подача сыпучих материалов (СМ) как управляющее воздействие на технологические объекты реализуется в целом ряде производств химической, пищевой, металлургической отраслей, в промышленности строительных материалов и др. В качестве конкретных примеров можно привести процессы сушки в кипящем слое, производства серной кислоты, производства суперфосфата, процесс каталитического крекинга, приготовление различных растворов и паст, загрузку агрегатов измельчения, загрузку классификаторов. Расход СМ может реализоваться как в непрерывном, так и в импульсном режиме, с перерывами между подачей доз. В последнем случае используется частотно- или широтно-импульсная модуляция импульсов расхода. Импульсный характер управляющего воздействия на параметры технологических объектов при постоянной амплитуде импульсов позволяет обеспечить ряд дополнительных, иногда уникальных возможностей для управления, в частности:

  • физическая реализация управления в виде строго регламентированных весовым или объемным методом порций (доз) материала повышает точность соответствия величины среднего расхода заданию [1];

  • наличие в управляющем воздействии релаксационных интервалов (пауз между импульсами) позволяет повысить качество управления объектами с чистым запаздыванием [2];

  • постоянная величина мгновенного расхода в пределах единичного импульса может быть стабилизирована на том значении, которое в наибольшей степени соответствует требованиям конкретных условий технологического процесса, свойствам материала и т. д [3];

  • в течение времени релаксации возможно проводить технологические и технические операции, в ином случае искажающие управление, в частности, осуществлять дозагрузку взвешиваемых расходных емкостей при весовом дозировании материала [4];

  • при импульсном контакте веществ, участвующих в технологическом процессе, значительно возрастает интенсивность тепло- и массообмена, повышается эффективность химического взаимодействия;

  • параметры большинства материальных потоков при постоянной величине расхода могут быть надежно определены расчетным путем;

  • ряд задач оптимального управления не может быть решен в традиционном классе непрерывных траекторий, но требует импульсного управляющего воздействия [5].

Для управляемой подачи и дозирования сыпучих материалов в технологические объекты управления применяют гравитационные, механические, вибрационные, аэрационные и пневматические питатели [3].

Основные требования к характеристикам питателей и дозаторов для сыпучих материалов, выполняющим функции ИУ АСР, могут быть сведены к следующим:

  • управление расходом твердой фазы в заданном диапазоне;

  • формирование выходного расхода с заданной точностью;

  • минимум удельных затрат энергии на перемещение двухфазной смеси;

  • линейность зависимости «управляющий сигнал − выходной расход материала» («расходной» статической характеристики);

  • возможность расчета расходной характеристики;

  • возможность коррекции расходной характеристики;

  • максимально возможная инвариантность выходного расхода к внешним и внутренним возмущениям;

  • минимальная сложность конструкции и отсутствие (или минимум) движущихся частей;

  • отсутствие контакта твердой фазы с внешней средой.

Предъявленным требованиям в значительной степени удовлетворяют пневматические питатели. Эти агрегаты могут быть реализованы без подвижных элементов, контактирующих с абразивной средой, в силу чего существенно превосходят механические питатели по надежности работы. При соответствующем выборе режима перемещения в пневмопитателях отсутствует разрушающее воздействие на частицы твердой фазы. Эти устройства обладают практически полной герметичностью, что также повышает их надежность и обеспечивает сохранность окружающей среды. Управление расходом при помощи пневмопитателей может быть реализовано как в непрерывной, так и в импульсной форме.

Целью курсового проекта является разработка вертикального пневмокамерного питателя (ВПКП) для объемного частотно-импульсного дозирования легкосыпучего зернистого материала в технологические объекты управления. При импульсном режиме работы ВПКП определяется как дозатор с фиксированной скоростью потока (ДФС). Как показано в [] и далее здесь, импульсное управление для ВПКП может быть организовано без дополнительного управляющего импульсного элемента за счет обратной связи в самом питателе. Кроме того, частотно-импульсный режим подачи материала через ВПКП (с полным опорожнением емкости) позволяет избежать проблем, связанных с необходимостью создания высокого давления при повторном пуске питателя после его плановой или аварийной остановки (нет необходимости преодолевать сопротивление столба материала, осевшего в стволе).

В ходе проектирования необходимо решить следующие задачи:

  • определить параметры импульса расхода (амплитуду и длительность), отвечающие требованиям к параметрам управляющего воздействия;

  • рассчитать основные конструктивные параметры питателя;

  • рассчитать параметры несущего воздуха;

  • выбрать соответствующее воздуходувное оборудование и регулирующую арматуру.

1 Вертикальный пневмокамерный питатель для сыпучих материалов

Принципиальная схема вертикального пневмокамерного питателя для сыпучих материалов (ВПКП) представлена на рисунке 1.

1 ― рабочая камера; 2 ― транспортный ствол; 3 ― аэроднище; 4 ― вентилятор;

5 ― привод вентилятора; 6 ― устройства для настройки рабочих характеристик питателя; 7 ― загрузочный материалопровод; 8 ― стабилизирующая воронка; 9 ― загрузочный бункер; 10 ― материалоотделитель; 11 ― аспирационный канал. массовые расходы несущего воздуха и твердого материала.

Рисунок 1 ― Принципиальная схема ВПКП

По вертикальной оси рабочей камеры 1 питателя расположен транспортный ствол 2, а в нижней ее части ― аэроднище 3, под которое вентилятором 4 подается несущий воздух. Высота транспортного ствола сравнима с высотой рабочей камеры. Вентилятор приводится электродвигателем 5. Загрузка камеры осуществляется естественным (гравитационным) путем по загрузочному материалопроводу (ЗМП) 7. Столб ожиженного материала в ЗМП изолирует камеру от внешней среды (атмосферы). Расстояние срезов транспортного ствола и ЗМП от аэроднища можно настраивать винтовыми устройствами 6. Постоянство высоты столба материала в ЗМП обеспечивается стабилизирующей воронкой 8, установленной под разгрузочным отверстием питающего бункера 9. Фиксация высоты столба материала в загрузочном материалопроводе позволяет избежать деформации импульсов и стабилизировать управляющее воздействие на объект подачи.

Материалоотделитель 10 служит для разделения потоков воздуха и твердой фазы при выдаче последней в объект управления. Аспирационный канал 11 перекрыт сеткой, предотвращающей унос мелкой фракции материала.

В режиме ДФС, устройство работает следующим образом. В исходном состоянии мерная камера питателя заполнена материалом, свободно поступившим в нее под действием силы тяжести через ЗМП 5. Количество материала, находящегося в камере, определяется не только конструктивными параметрами последней, но и углом естественного откоса материала. При подаче воздуха под аэроднище материал подхватывается потоком и, через транспортный ствол, выводится в материалоотделитель и, через него в объект управления. Давление в камере питателя устанавливается таким образом, чтобы в процессе выдачи дозы материал из ЗМП в камеру не поступал, т. е.

(1)

где – рабочее давление в камере питателя;

– давление расширенного слоя материала в ЗМП;

– плотность расширенного слоя в ЗМП;

– ускорение свободного падения.

После опустошения камеры давление в ней падает, и камера начинает заполняться. Подачу воздуха под аэроднище прекращают и возобновляют при поступлении команды (или разрешения) на подачу следующей дозы. При подаче материала в виде импульсной последовательности с постоянными параметрами импульсов и переменной частотой их подачи, средний во времени объемный расход материала

(2)

В (2) частота выдачи доз, Т – период выдачи.

Параметры импульсной последовательности должны быть выбраны таким образом, чтобы промежуток времени между импульсами при максимальной частоте подачи позволял с некоторым запасом по времени заполнить камеру питателя. Кроме этого, промежуток времени должен включать в себя также время, необходимое для пуска и останова аппаратуры подачи воздуха.

Основное влияние на точность объемного отмеривания дозы при заполнении камеры оказывают изменения гранулометрического состава и влажности материала (изменяется угол естественного откоса материала). На сухом материале при вариации скорости воздуха от 13 до 16 м/с экспериментально определенная погрешность по массе выданной дозы не превышает 1,7%. Источником погрешности, очевидно, является неконтролируемая подача мелких частиц материала при нарастании и сбросе давления в камере. Объяснить это можно следующим образом. При нарастании давления сначала происходит унос мелкой фракции и одновременное дозаполнение камеры вплоть до полного запирания ЗМП, т. е. объем дозы неконтролируемо изме­няется. При сбросе давления материал начинает поступать в камеру, но расход воздуха еще достаточен для уноса, и выдача материала некоторое время еще продолжается.

Процесс выдачи материала питателем нельзя рассматривать в отрыве от реакции на него технологического объекта. При поступлении материала в любой технологический объект, в последнем происходят изменения: повышается уровень содержимого, изменяются температура, концентрация и другие параметры. Только ориентируясь на результат ввода дозы, можно определить основные характеристики самого питателя и параметры процесса дозирования. На рисунке 2 показана реакция объекта, аппроксимированного инерционным звеном первого порядка на прямоугольный импульс подачи материала. Прямоугольными импульсы расхода можно считать в тех случаях, когда переходные процессы в питателе происходят значительно быстрее, чем в объекте подачи (управления).

— массовый расход сыпучего материала; — мгновенный массовый расход сыпучего материала; — масса единичной дозы; — длительность выдачи дозы; — релаксационный промежуток времени; — максимальная амплитуда изменения параметра технологического объекта в процессе загрузки.

Рисунок 2 — Реакция инерционного объекта первого порядка на входное воздействие в форме прямоугольных импульсов

Прямоугольными импульсы расхода можно считать в тех случаях, когда переходные процессы в питателе происходят значительно быстрее, чем в объекте подачи (управления). Объем единичной дозы в таком случае определяется как

(3)

Масса единичной дозы материала, выданной из емкости питателя (при аппроксимации расхода прямоугольным импульсом):

,

(4)

Максимальная амплитуда реакции на импульс для рассматриваемого объекта управления определяется как

.

(5)

Основные затраты энергии при пневматическом управлении расходом идут на создание потока несущего воздуха. Показано [6], что для каждой конструкции ВПКП, в частности, для каждой величины Z (рисунок 1) существует величина расхода воздуха, обеспечивающая минимум удельных затрат на перенос массы твердой фазы (рисунок 3).

Рисунок 3 — Экстремальные зависимости удельного расхода воздуха

от абсолютного значения расхода

Управление расходом в частотно-импульсной форме позволяет выбрать амплитуду импульса именно на этом, минимальном значении расхода. Расчет системы в этом случае упрощается тем, что точки оптимума по расходу воздуха практически совпадают с удвоенной величиной скорости витания, которая, в свою очередь, расчетным путем определяется по параметрам частиц материала (см. ниже).

Частотно-импульсный режим подачи материала через ВПКП (с полным опорожнением емкости) выгоден еще и тем, что позволяет избежать проблем, связанных с необходимостью создания повышенного давления при повторном пуске питателя после его остановки (нет необходимости преодолевать сопротивление столба материала, осевшего в стволе).