Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 3 (2010).doc
Скачиваний:
39
Добавлен:
04.11.2018
Размер:
541.18 Кб
Скачать

Глава 3 Блохин а.В.

Глава 3. Второй закон термодинамики и его приложения.

3.1. Самопроизвольные и несамопроизвольные процессы.

Практика показывает, что многие процессы происходят самопроизвольно (спонтанно), а другие нет. Газ расширяется и заполняет весь предоставленный ему объем, но спонтанно не сжимается. Горячие тела остывают до температуры окружающей среды, но самопроизвольно не становятся горячее, чем окружающая среда. Многие химические реакции в одном направлении протекают быстрее, чем в другом. При сгорании алмаза образуется горячий диоксид углерода, но нагревание диоксида углерода не приводит к образованию алмаза. Следовательно, существует что-то, что определяет направление самопроизвольного изменения – изменения, тенденция к которому существует у всех веществ, если этому не мешают внешние воздействия. Можно сжать газ до меньшего объема, получить более низкую температуру, чем температура окружающей среды, можно синтезировать алмазы, но на осуществление этих процессов необходимо затратить работу.

Процессы, происходящие спонтанно без внешних воздействий, называются самопроизвольными. Их иногда называют положительными, так как при их протекании можно получить работу. Примерами сапризвольных процессов являются: переход энергии от горячего тела к холодному в форме теплоты при конечной разности температур; переход механической работы в теплоту при трении; расширение газа в пустоту; диффузия; взрывные процессы; растворение в ненасыщенном растворе.

Характерными признаками самопроизвольных процессов являются следующие:

1. В самопроизвольных процессах часть энергии переходит в теплоту. Обратного самопроизвольного процесса превращения теплоты в механическую, электрическую, световую или другие виды энергии нкогда не наблюдается.

2. Их можно использовать для получения работы. По мере протекания самопроизвольного процесса система теряет способность производить работу.

3. В самопроизвольном процессе конечное состояние более вероятно, чем исходное.

4. Самопроизвольные процессы термодинамически необратимы.

Несамопроизвольными (отрицательными) называются процессы, для осуществления которых необходимо подвести энергию извне.

Что же определяет направление самопроизвольного процесса? Может быть, то, что энергия системы стремится к минимуму? Но, согласно первому закону термодинамики, в любом процессе энергия сохраняется, следовательно, нельзя утверждать, что все стремится к состоянию с минимальной энергией. Например, идеальный газ самопроизвольно расширяется в вакуум, но при T = const его внутренняя энергия не изменяется.

Кроме того, если энергия системы в результате самопроизвольного процесса уменьшилась, то энергия окружающей среды увеличилась на ту же величину. Но увеличение энергии окружающей среды было также спонтанно, как и уменьшение энергии системы. Однако, хотя общая энергия остается постоянной, при самопроизвольном процессе происходит перераспределение энергии, ее диссипация – переход части энергии упорядоченных процессов в энергию неупорядоченных процессов и в итоге в теплоту (латинское dissipatio – расcеяние). Диссипация это максимально равномерное распределение энергии или вещества, при котором выравниваются интенсивные параметры систем. Такое состояние является наиболее вероятным.

При самопроизвольном процессе энергия рассеивается, из более упорядоченной формы переходит в беспорядочное, хаотическое движение молекул. На обратный процесс превращения хаотического движения молекул в упорядоченное необходимо затратить работу. Обращение самопроизвольного процесса возможно лишь при использовании энергии, получаемой при другом самопроизвольном процессе (должна происходить компенсация: отрицательный процесс должен компенсироваться положительным).

Итак, направлением процесса управляет необратимое рассеивание энергии. Второй закон термодинамики дает количественную характеристику самопроизвольности (необратимости) процесса через функцию состояния — энтропию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]