Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика(Контрольная по физике).doc
Скачиваний:
3
Добавлен:
02.11.2018
Размер:
219.65 Кб
Скачать

Динамика абсолютно твердого тела

Динамика абсолютно твердого тела полностью определяется его полной массой, положением центра масс и тензором инерции (также, как динамика материальной точки — ее массой). (Конечно, имеется в виду, что заданы все внешние силы и внешние связи, которые, конечно, могут зависеть от формы тела или его частей итд).

Другими словами, динамика абсолютно твердого тела при неизменных внешних силах зависит от распределения его масс только через полную массу, центр масс и тензор инерции, в остальном детали распределения масс абсолютно твердого тела никак не скажется на его движении[2]; если как-то так перераспределить массы внутри абсолютно твердого тела, что не изменится центр масс и тензор инерции, движение твердого тела в заданных внешних силах не изменится (хотя при этом могут измениться и как правило изменятся внутренние напряжения в самом твердом теле!).

Примечания

  1.  В некоторых частных случаях (например при быстром движении относительно наблюдателя тела, которое само вращается медленно) модель абсолютно твердого тела может принести пользу: задача сперва решается в ньютоновском приближении в системе отсчета, связанной, например, с центром масс тела, где все движения медленные, а потом с помощью преобразований Лоренца делается пересчет готового решения в систему отсчета наблюдателя. Однако всегда нужна особая осторожность при таком применении, так как вообще говоря при использовании модели абсолютно черного тела в такой ситуации повышен риск получить или явный парадокс, или просто неверный ответ.

  2.  Случаи, когда (внешние) силы зависят от масс, например, случай (неоднородной) гравитации, в принципе нарушают простое утверждение о независимости динамики абсолютно твердого тела от деталей распределения его массы. Это нарушение устраняется в нашей формулировке оговоркой о неизменности внешних сил. В практических же расчетах всегда можно рассмотреть распределение массы, от которого зависят силы, (например — распределение гравитационной массы в случае тяготения) чисто формально независимым от распределения инертной массы — хотя на самом деле они совпадают; тогда утверждение о независимости динамики от деталей распределения массы формально же касается только второго из них, а не первого.

Деформи́руемое те́ло (англ. deformable body) — физическое тело, способное к деформации, то есть тело, способное изменить свою форму, внутреннюю структуру, объём, площадь поверхности под действием внешних сил. Относительная позиция любых составных точек деформируемого тела может изменяться. Деформируемые тела являются противоположностьюабсолютно твёрдых тел, которые определены их элементами. Идеальным представлением деформируемого тела является бесконечное количество частиц, наполняющих его.

Согласно физике деформи́руемое те́ло — это механическая система, обладающая внутренними степенями свободы (в дополнение к поступательным и вращательным), которые обычно называют колебательными степенями свободы. Деформируемое тело без диссипационных степеней свободы называется абсолютно упругим телом; если же имеется диссипация, то тело называется неупругим.

Важнейшим случаем деформируемого тела является система взаимодействующих материальных точек, или, условно говоря, «молекула». «Молекула», состоящая из N «атомов» (то есть материальных точек), обладает в трёхмерном пространстве 3N степенями свободы, из которых три поступательных, три вращательных (две вращательных для двухатомной молекулы), и остальные — колебательные.

Деформируемое тело, по сравнению с абсолютно твёрдым телом, намного тяжелее симулировать и обработать. Уравнения движения деформируемого тела намного более сложны, так как необходима дополнительная система координат для учёта деформации тела. Теория малых смещений часто используется инженерами и физиками для решения проблем теории упругости, в которые вовлечена деформация. Это позволяет упростить проблему и облегчить её решение. Эти аппроксимации (приближения) позволяют методике очень сильно приблизиться к реальности, однако только до тех пор, пока деформации незначительные. Если необходимо обработать большие смещения, необходимо использовать метод конечных элементов.

Деформируемое тело может деформироваться под воздействием внешней силы (в этом случае энергия деформации передаётся через работу) или из-за изменения температуры (энергия деформации в этом случае передаётся через тепло). Результатом первого случая может быть растяжение (вытяжение) тела вдоль одной из его осей, сдавливание, изгиб и скручивание. Во втором случае наиболее значительным фактором, определяемым величиной температуры, является подвижность структурных дефектов: межзёренных границ, вакансий, линейных и винтовых дислокаций, дефектов упаковки, двойников. Перемещение и сдвиг таких подвижных дефектов активируется термически, и потому ограничено уровнем атомной диффузии. Деформации обычно характеризуются тензором деформации.[1][2]