Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

К практическому занятию №2

.pdf
Скачиваний:
3
Добавлен:
29.03.2016
Размер:
170.14 Кб
Скачать

20-300 -осеннего. Только зимняя часть приэкваториальной зоны получает максимальные для данного периода значения прямой солнечной радиации.

С высотой над уровнем моря максимальные значения радиации возрастают вследствие уменьшения оптической толщины атмосферы: на каждые 100 метров высоты величина радиации в тропосфере возрастает на 0,007-0,14 кВт/м2. Максимальные значения радиации, зафиксированные в горах, составляют 1,19 кВт/м2.

Рассеянная радиация, поступающая на горизонтальную поверхность, также меняется в течение дня: возрастает до полудня и уменьшается после полудня. Величина потока рассеянной радиации в целом зависит от продолжительности дня и высоты Солнца над горизонтом, а также прозрачности атмосферы (уменьшение прозрачности приводит к увеличению рассеяния). Кроме того, рассеянная радиация в очень широких пределах меняется в зависимости от облачности. Отраженная облаками радиация также рассеивается. Рассеивается и отраженная снегом радиация, что увеличивает ее долю зимой. Рассеянная радиация при средней облачности более чем в два раза превосходит ее значения в безоблачный день.

В Москве среднее полуденное значение рассеянной радиации летом при ясном небе составляет 0,15, а зимой при низком Солнце - 0,08 кВт/м2. При несплошной облачности эти значения составляют летом 0,28, а зимой 0,10 кВт/м2. В Арктике при сравнительно тонких облаках и снежном покрове эти значения летом могут достигать 0,70 кВт/м2. Очень велики значения рассеянной радиации в Антарктиде. С увеличением высоты рассеянная радиация убывает.

Рассеянная радиация может существенно дополнять прямую радиацию, особенно при низком Солнце. Вследствие рассеянного света вся атмосфера днем служит источником освещения: днем светло и там, куда солнечные лучи непосредственно не падают, и тогда, когда Солнце скрыто облаками. Рассеянная радиация увеличивает не только освещенность, но и нагревание земной поверхности. Величины рассеянной радиации в общем меньше, чем

прямой, но порядок величин тот же. В тропических и средних широтах

величина рассеянной радиации составляет от половины до двух третей значений прямой радиации. На 50-600 их значения близки, а ближе к полюсам рассеянная радиация преобладает.

6.1.6. Суммарная радиация Всю солнечную радиацию, приходящую к земной поверхности,

называют суммарной солнечной радиацией.

Q = S sin hc + D

(7)

где S - энергетическая освещенность прямой радиации, hc - высота Солнца, D - энергетическая освещенность рассеянной радиации.

При безоблачном небе суммарная солнечная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая диск Солнца, увеличивает суммарную радиацию по сравнению с безоблачным небом, полная облачность, наоборот, уменьшает ее. В среднем же, облачность уменьшает радиацию. Поэтому летом приход суммарной радиации в дополуденные часы больше, чем в послеполуденные и в первую половину года больше, чем во вторую. Полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе в среднем составляют 0,78, при открытом Солнце и облаках 0,80, при сплошной облачности - 0,26 кВТ/м2.

Распределение значений суммарной радиации по земному шару отклоняется от зонального, что объясняется влиянием прозрачности атмосферы и облачности. Максимальные годовые значения суммарной радиации составляют 84*102 – 92*102 МДж/м2 и наблюдаются в пустынях Северной Африки. Над областями приэкваториальных лесов с большой облачностью значения суммарной радиации снижены до 42*102 – 50*102 МДж/м2. К более высоким широтам обоих полушарий значения суммарной радиации убывают, составляя под 60-й параллелью 25*102 – 33*102 МДж/м2. Но затем снова растут - мало над Арктикой и значительно - над Антарктидой, где в центральных частях материка составляют 50*102 – 54*102 МДж/м2. Над

океанами в целом значения суммарной радиации ниже, чем над соответствующими широтами суши.

Вдекабре наибольшие значения суммарной радиации отмечаются в пустынях Южного полушария (8*102 – 9*102 МДж/м2). Над экватором значения суммарной радиации снижаются до 3*102 – 5*102 МДж/м2. В

Северном полушарии радиация быстро убывает к полярным районам и за полярным кругом равна нулю. В Южном полушарии суммарная радиация убывает к югу до 50-600 ю.ш. (4*102 МДж/м2), а затем возрастает до 13*102 МДж/м2 в центре Антарктиды.

Виюле наибольшие значения суммарной радиации (свыше 9*102 МДж/м2) наблюдаются над северо-восточной Африкой и Аравийским полуостровом. Над экваториальной областью значения суммарной радиации невысоки и равны декабрьским. К северу от тропика суммарная радиация убывает медленно до 600с.ш., а затем возрастает до 8*102 МДж/м2 в Арктике.

Вюжном полушарии суммарная радиация от экватора быстро убывает к югу, достигая нулевых значений у полярного круга.

6.1.7. Отражение солнечной радиации. Альбедо Земли.

При поступлении на поверхность суммарная радиация частично поглощается в верхнем тонком слое почвы или воды и переходит в тепло, а частично отражается. Условия отражения солнечной радиации от земной поверхности характеризуются величиной альбедо, равной отношению отраженной радиации к приходящему потоку (к суммарной радиации).

А = Qотр / Q

(8)

Теоретически значения альбедо могут меняться от 0 (абсолютно черная поверхность) до 1(абсолютно белая поверхность). Имеющиеся материалы наблюдений показывают, что величины альбедо подстилающих поверхностей меняются в широких пределах, причем их изменения

охватывают почти полностью возможный интервал значений отражательной

способности различных поверхностей. В экспериментальных исследованиях

найдены значения альбедо почти для всех распространенных естественных подстилающих поверхностей. Эти исследования прежде всего показывают,

что условия поглощения солнечной радиации на суше и на водоемах заметно различаются. Наибольшие значения альбедо наблюдаются для чистого и сухого снега (90-95%). Но так как снежный покров редко бывает совершенно чистым, то средние значения альбедо снега в большинстве случаев равны 7080%. Для влажного и загрязненного снега эти значения еще ниже - 40-50%.

При отсутствии снега наибольшие альбедо на поверхности суши свойственны некоторым пустынным районам, где поверхность покрыта слоем кристаллических солей (дно высохших озер). В этих условиях альбедо имеет значение 50%. Немногим меньше значения альбедо в песчаных пустынях. Альбедо влажной почвы меньше альбедо сухой почвы. Для

влажных черноземов значения альбедо составляют предельно малые величины - 5%. Альбедо естественных поверхностей со сплошным растительным покровом изменяется в сравнительно небольших пределах - от 10 до 20-25%. При этом альбедо леса (особенно хвойного) в большинстве случаев меньше, чем альбедо луговой растительности.

Условия поглощения радиации на водоемах отличаются от условий поглощения на поверхности суши. Чистая вода сравнительно прозрачна для коротковолновой радиации, вследствие чего солнечные лучи, проникающие в верхние слои, многократно рассеиваются и только после этого в значительной мере поглощаются. Поэтому процесс поглощения солнечной радиации зависит от высоты Солнца. Если оно стоит высоко - значительная часть приходящей радиации проникает в верхние слои воды и, в основном, поглощается. Поэтому альбедо водной поверхности составляет первые единицы процента при высоком Солнце, а при низком Солнце альбедо возрастает до нескольких десятков процентов.

Альбедо системы «Земля-атмосфера» имеет более сложную природу.

Приходящая в атмосферу солнечная радиация частично отражается в

результате обратного рассеивания атмосферы. При наличии облаков значительная часть радиации отражается от их поверхности. Альбедо облаков зависит от толщины их слоя и составляет в среднем 40-50%. При полном или частичном отсутствии облаков альбедо системы «Земля- атмосфера» существенно зависит от альбедо самой земной поверхности.

Характер географического распределения планетарного альбедо по наблюдениям со спутников показывает существенные различия между альбедо высоких и средних широт Северного и Южного полушарий. В тропиках наибольшие значения альбедо наблюдаются над пустынями, в

зонах конвективной облачности над Центральной Америкой и над акваториями океанов. В Южном полушарии, в отличие от Северного,

наблюдается зональный ход альбедо вследствие более простого распределения суши и моря. Наиболее высокие значения альбедо находятся в полярных широтах.

Преобладающая часть радиации, отраженной земной поверхностью и верхней границей облаков, уходит в мировое пространство. Также уходит и треть рассеянной радиации. Отношение уходящей в космос отраженной и рассеянной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли или альбедо Земли. Его значение оценивают в 30%. Основную часть планетарного альбедо составляет радиация, отраженная облаками.

6.1.8. Собственное излучение. Встречное излучение.

Эффективное излучение.

Солнечная радиация, поглощаясь верхним слоем Земли, нагревает его, в

результате чего почва и поверхностные воды сами излучают длинноволновую радиацию. Эту земную радиацию называют собственным излучением земной поверхности. Интенсивность этого излучения с некоторым допущением подчиняется закону Стефана-Больцмана для

абсолютно черного тела с температурой 150С. Но так как Земля не абсолютно черное тело (ее излучение соответствует излучению серого тела), при расчетах необходимо вводить поправку, равную ε=0,95. Таким образом,

собственное излучение Земли можно определить по формуле

Ез = εσТ4

(9)

Определено, что при среднепланетарной

температуре Земли 150С

собственное излучение Земли Ез = 3.73*102 Вт/м2. Столь большая отдача

радиации с земной поверхности приводила бы к очень быстрому ее охлаждению, если бы этому не препятствовал обратный процесс - поглощение солнечной и атмосферной радиации земной поверхностью. Абсолютные температуры на земной поверхности лежат в пределах 190350К. При таких температурах собственное излучение имеет длины волн в пределах 4-120 мкм, а максимум энергии приходится на 10-15 мкм.

Атмосфера, поглощая как солнечную радиацию, так и собственное излучение земной поверхности, нагревается. Кроме того, атмосфера нагревается нерадиационным путем (путем теплопроводности, при конденсации водяного пара). Нагретая атмосфера становится источником длинноволнового излучения. Большая часть этого излучения атмосферы (70%) направлена к земной поверхности и носит название встречного излучения (Еа). Другая часть излучения атмосферы поглощается вышележащими слоями, но по мере уменьшения содержания водяного пара, количество поглощенной атмосферой радиации уменьшается, и часть ее уходит в мировое пространство.

Земная поверхность поглощает встречное излучение почти целиком (9599%). Таким образом, встречное излучение является для земной поверхности

важным источником тепла в дополнение к поглощенной солнечной радиации.

При отсутствии облаков длинноволновое излучение атмосферы определяется наличием водяного пара и диоксида углерода. Влияние атмосферного озона, по сравнению с этими факторами, незначительно.

Водяной пар и диоксид углерода поглощают длинноволновое излучение в диапазоне от 4,5 до 80 мкм, но не сплошь, а в определенных узких спектральных областях. Наиболее сильное поглощение излучения водяными парами происходит в области длин волн 5-7,5 мкм, тогда как в области 9,5-12

мкм

Рис. 4.1. Окна прозрачности атмосферы в оптическом диапазоне

поглощение практически отсутствует. Этот диапазон длин волн называют окном прозрачности атмосферы. Диоксид углерода имеет несколько полос поглощения, из которых наиболее существенна полоса с длинами волн 13-17 мкм, на которые приходится максимум земного излучения. Следует отметить, что содержание углекислого газа сравнительно постоянно, тогда как количество водяного пара меняется очень значительно, в зависимости от метеорологических условий. Поэтому изменение влажности воздуха оказывает значительное влияние на величину излучения атмосферы. Например, наибольшее встречное излучение - 0,35-0,42 кВт/м2 в среднем годовом у экватора, а к полярным районам оно убывает до 0,21 кВТ/м2, на равнинных территориях Еа составляет 0,21-0,28кВТ/м2 и 0,07-0,14 кВт/м2 - в горах. Уменьшение встречного излучения в горах объясняется уменьшением содержания водяного пара с высотой.

Встречное излучение атмосферы обычно значительно возрастает при наличии облаков. Облака нижнего и среднего ярусов, как правило, являются

достаточно плотными и излучают как абсолютно черное тело при соответствующей температуре. Высокие облака в связи с их малой плотностью обычно излучают меньше, чем черное тело, поэтому они мало влияют на соотношение собственного и встречного излучений.

Поглощение водяным паром и другими газами длинноволнового собственного излучения создает «парниковый эффект», т.е. сохраняет солнечное тепло в земной атмосфере. Рост концентрации этих газов и прежде

всего диоксида углерода в результате хозяйственной деятельности человека может привести к увеличению доли остающегося на планете тепла, к

увеличению среднепланетарных температур и изменению глобального климата Земли, последствия которого пока трудно предсказуемы. Но следует заметить, что основную роль в поглощении земного излучения и формировании встречного играет водяной пар.

Через окно прозрачности часть длинноволнового земного излучения уходит через атмосферу в мировое пространство. Совместно с излучением атмосферы эта радиация называется уходящей радиацией. Если за 100 единиц принять приток солнечной радиации, то уходящая радиация составит 70 единиц. С учетом 30 единиц отраженной и рассеянной радиации (планетарное альбедо Земли) Земля отдает в космическое пространство столько же радиации, сколько и получает, т.е. находится в состоянии лучистого равновесия.

6.1.9. Радиационный баланс земной поверхности

Радиационным балансом земной поверхности называют разницу между приходом радиации на земную поверхность (в виде поглощенной радиации) и ее расходом в результате теплового излучения (эффективное излучение). Таким образом, радиационный баланс имеет следующий вид:

Q =(S sin hc +D)(1-A) - Eэ

(10)

Радиационный баланс меняется от ночных отрицательных значений к

дневным положительным в летнее время при высоте

Солнца 10-150 и

наоборот, от положительных к отрицательным - перед заходом при тех же высотах Солнца. Зимой переход значений радиационного баланса через ноль происходит при больших углах Солнца (20-250). В ночное время при

отсутствии суммарной радиации радиационный баланс отрицателен и равен эффективному излучению.

Распределение радиационного баланса по земному шару достаточно равномерно. Годовые значения радиационного баланса положительны повсюду, кроме Антарктиды и Гренландии. Положительные годовые значения радиационного баланса означают, что избыток поглощенной

радиации уравновешивается нерадиационной передачей тепла от земной поверхности к атмосфере. Это означает, что для земной поверхности радиационного равновесия нет (приход радиации больше, чем ее отдача), но существует тепловое равновесие, обеспечивающее стабильность тепловых характеристик атмосферы.

Наибольшие годовые значения радиационного баланса наблюдаются в экваториальной зоне между 200 северной и южной широты. Здесь он составляет более 40*102 МДж/м2. К более высоким широтам значения радиационного баланса убывают и около 60-й параллели составляют от 8*102 до 13*102 МДж/м2. Далее к полюсам радиационный баланс еще более уменьшается и составляет в Антарктиде – 2*102 – 4*102 МДж/м2. Над океанами радиационный баланс больше, чем над сушей в тех же широтах. Существенные отклонения от зональных значений имеются и в пустынях, где баланс ниже широтного значения из-за большого эффективного излучения.

Вдекабре радиационный баланс отрицателен на значительной части Северного полушария севернее 40-параллели. В Арктике он достигает значений 2*102 МДж/м2 и ниже. К югу от 40-й параллели он возрастает до Южного тропика (4*102 – 6*102 МДж/м2), а затем понижается к Южному полюсу, составляя на побережье Антарктиды 2*102 МДж/м2

Виюне радиационный баланс максимален над Северным тропиком (5*102 – 6*102 МДж/м2). К северу он понижается, оставаясь положительным

до Северного полюса, а к югу уменьшается, становясь отрицательным у берегов Антарктиды (-0,4 -0,8*102 МЖд/м2).