Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NIRS_Matunin.docx
Скачиваний:
58
Добавлен:
23.03.2016
Размер:
548.15 Кб
Скачать

Основная часть

1 Теоретическая часть

1.1 КИХ-фильтры

Учитывая, что фильтр Гильберта является частным случаем КИХ фильтров, сначала рассмотрим их.

КИХ-фильтр (фильтр с конечной импульсной характеристикой), называемый также нерекурсивным, - это фильтр, импульсный отклик которого содержит лишь конечное число ненулевых отсчетов. Такой импульсный отклик всегда абсолютно суммируем, и, следовательно, КИХ-фильтры всегда устойчивы. КИХ-фильтры имеют также то преимущество, что их работу легче понять как в одномерном, так и в многомерном случае.

Передаточная функция физически реализуемого цифрового фильтра с конечной импульсной характеристикой (КИХ-фильтра) может быть представлена в виде

, где h(n) – импульсная характеристика. При замене в (1.1) z = ejw получим частотную характеристику КИХ-фильтра в виде

где – амплитудно-частотная характеристика (АЧХ) фильтра, – фазо-частотная характеристика (ФЧХ) фильтра.

Фазовая задержка фильтра определяется как

Групповая задержка фильтра определяется как

Отличительной способностью КИХ-фильтров является возможность реализации у них постоянных фазовой и групповой задержек, т.е. линейной ФЧХ: , при соблюдении этого условия сигнал, проходящий через фильтр, не искажает своей формы. Условия, обеспечивающие линейную ФЧХ КИХ-фильтра: импульсная характеристика фильтра должна быть симметричной относительно точкидля нечетногоNи относительно средней точки интервала, гдеN– количество отсчётов импульсной характеристики данного КИХ-фильтра, см. Рисунок 1.1.

Рисунок 1.1 – Импульсные характеристики КИХ-Фильтров

    1. Преобразование Гильберта

Преобразование Гильберта для любого произвольного сигнала представляет собой идеальный широкополосный фазовращатель, который осуществляет поворот начальных фаз всех частотных составляющих сигнала на угол, равный 90о(сдвиг на/2). Применение преобразования Гильберта позволяет выполнять квадратурную модуляцию сигналов, в каждой текущей координате модулированных сигналов производить определение огибающей и мгновенной фазы и частоты сигналов.

Прямое преобразование Гильберта произвольной действительной функции x(t),

-< t <, результат которого будем отображать со знаком тильды над индексом исходной функции, задается сверткой x(t) с функцией

, где TH сокращение отTransform Hilbert.

Функция называетсяядром преобразованияГильберта. Обратное преобразование Гильберта определяется выражением:

Преобразование Фурье от функции :

, где TFсокращение отTransformFourier. Фурье-образ функции:

Рисунок 1.2.1 – Исходный и преобразованный сигнал

Изменение спектра сигналов при выполнении преобразования Гильберта. На рисунке 1.2.1 приведено преобразование радиоимпульсного сигнала x(t) с несущей частотой foв сигналво временной области непосредственно через операцию свертки с функцией . Сигнал x(t) является односторонним каузальным. Спектр сигнала содержит реальную и мнимую составляющие, т.е. может быть записан в виде. Эти составляющие для сигнала x(t) показаны непрерывными кривыми на

рисунке 1.2.2.

Рисунок 1.2.2. – Спектральные составляющие сигнала x(t)

При выполнении преобразования реальная и мнимая части спектра X(w) умножаются на -jsgn(w). Функция Re(X(w)) умножается на 1 приw<0, на 0 приw=0 и на –1 приw>0, и тем самым превращается в нечетную мнимую часть Im((w)) спектра(w) функции(t), показанную пунктиром. Это означает, что все косинусные гармоники сигнала, которым соответствует реальная часть спектра сигнала, превращаются в синусные гармоники.

Аналогично на функцию –j sgn(w) умножается и мнимая функция j Im(X(w)), при этом сигнатурная функция инвертируется (-j j = 1), что меняет знак левой части функции Im(X(w)) – области отрицательных частот, и превращает ее в реальную четную частьспектра. Синусные гармоники спектра сигнала превращаются в косинусные гармоники.

При выполнении преобразования гильберта фазовый спектр сигнала (t) (начальные фазовые углы всех гармонических составляющих сигнала) сдвигается на -90опри f > 0 и на 90опри f < 0 относительно фазового спектра сигнала x(t).

Свойства преобразования Гильберта:

Линейность. ТН[ax(t)+by(t)] = a(t)+b(t) при любых постоянных значениях коэффициентов а и b для любых произвольных функций x(t) и y(t).

Сдвиг. ТН[x(t-a)] = (t-a).

Преобразование константы, а в силу линейности преобразования, и постоянной составляющей сигнала, равно нулю. Это прямо следует из нечетности ядра преобразования Гильберта. Отсюда следует, что при преобразовании Гильберта из квадратурной составляющей исключается постоянная составляющая.

Свойство четности и нечетностиопределяется сдвигом всех гармоник сигнала на/2, при этом четные сигналы x(t) дают нечетные сигналы(t), и наоборот. Это действительно и для произвольных сигналов относительно их четных и нечетных частей.

Последовательное двойное преобразованиеГильберта возвращает исходную функцию с обратным знаком ТН[ТН[x(t)]] = ТН[(t)] = -x(t). Это определяется тем, что при двойном преобразовании фазы всех гармоники сигнала сдвигаются на, что изменяет знак их гармоник. Однако в силу исключения из сигнала при первом преобразовании постоянной составляющей, при двойном преобразовании сигнал x(t) восстанавливается с исключенным средним значением по интервалу задания.

Обратное преобразование Гильберта, по существу, это второе преобразование в последовательном двойном преобразовании Гильберта с изменением знака результата:

x(t) = ТH-1[(t)] = -=(t)*(-1/t).

Альтернативная форма вычисления x(t) из (t):

x(t) = TF-1[(j sgn(f)TF[(t)]].

Подобиепри изменении масштаба аргумента: ТН[x(at)] =(at).

Энергетическая эквивалентность:

x2(t) dt =2(t) dt.

Это следует из теоремы Парсеваля (энергия сигнала равна сумме энергии всех частотных составляющих сигнала) и равенства модулей спектров сигналов x(t) и (t) (энергия сигнала не зависит от его фазовочастотной характеристики).

Свойство ортогональности:

x(t)(t) dt = 0

Если все косинусные составляющие сигнала x(t) превращаются в ортогональные им синусные составляющие сигнала , а синусные – в ортогональные им косинусные, то и сигналы x(t) идолжны быть ортогональны.

Свойство свертки:

TH[x(t) * y(t)] = (t)* y(t) = x(t) * (t).

Это вытекает из следующих соображений. Примем z(t) = x(t)*y(t), при этом:

Z(f) = X(f)Y(f),(f) = -j sgn(f)Z(f) = -j sgn(f) X(f)Y(f).

(f) = [-j sgn(f) X(f)]Y(f) =(t)Y(f)(t)*y(t).

(f) = X(f)[-j sgn(f) Y(f)] = X(f)(f)  x(t) *(t).

Отсутствие коммутативностис преобразованием Фурье:

TF[ТН[x(t)]]  ТН[TF[x(t)]].

Свойство модуляции: Модулирующие сигналы u(t), как правило, имеют ограниченный спектр, максимальные частоты которогомного меньше значения несущей частотыo, при этом:

ТН[u(t)cos(ot)] = u(t)sin(ot).

Оператор дискретного преобразования Гильбертаhb(kΔt)1/πt на интервале от -Т до Т с шагом Δt можно получить обратным преобразованием Фурье частотной характеристики Hb(f) (выражение 1.3) в интервале от -fNдо fN (fN=1/2Δt). При Δt=1:

hb(kΔt) =Hb(f) exp(j2πfkΔt) df =j exp(j2πfkΔt) df -j exp(j2πfkΔt) df =

= [1/(2πkΔt)][1-exp(-jπkΔt)-exp(jπkΔt)+1] = [1/(πkΔt)][1-(exp(-jπkΔt)+exp(jπkΔt)/2] =

= [1/(πkΔt)](1-cos(πkΔt)) = [2/(πkΔt)] sin2(πkΔt/2). (1.4)

hb(kΔt) = 2/(πkΔt),k=1,3,5, ... ,

hb(kΔt) = 0, k = 0,2,4, ... .

Нетрудно убедиться, что коэффициент усиления постоянной составляющей оператора равен нулю.

В частотной области при выполнении преобразования Гильберта спектральных функций оператор свертки hb(kΔf)1/πf не отличается от приведенного для временной области.

    1. Исследование аналогов.

При исследовании устройств, использующих преобразование Гильберта, был найден и исследован патент на “Цифровой измеритель модуляции” (Патент РФ 2248000), измеряющий параметры модулированных сигналов. В этом устройстве преобразование Гильберта находится через прямое и обратное преобразования Фурье, которое затрачивает большее количество ресурсов (в связи с чем его труднее реализовать в бортовых системах). Исследований,аналогичных данной работе,обнаружено не было.

    1. Обзор литературы.

В процессе исследования была рассмотрена различная литературы по радиотехнике и фильтрам. Анализ оптимальности и ошибки предсказания были выполнены с помощью книги “Основы радиоэлектроники и связи, основы оптимального радиоприёма”. Также были изучены различные алгоритмы обработки сигнала в трактах систем пассивной радиолокации (т.е. сигнал имеет доподлинно неизвестные параметры).

В книге “Теоретические основы статистической радиотехники” была рассмотрена структура построения фазового обнаружителя и условие, с помощью которого можно распознать сигнал на фоне шума.

    1. Разработка направлений исследований и выбор оптимального варианта.

Данная работа затрагивает исследование моделей преобразователей Гильберта и нахождение модели, реализующей преобразование Гильберта, наиболее близкое к идеальному. Мною разработаны 2 направления исследований: исследование фильтра Гильберта, сформированного по формуле (1.4) и фильтра, сформированного по методу Паркса-Макклеллана.

В данной работе выбран вариант исследования характеристик фильтра, сформированного по методу Паркса-Макклеллана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]