Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
42-56.docx
Скачиваний:
5
Добавлен:
22.03.2016
Размер:
368.23 Кб
Скачать

42. Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени t зададим углом . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся  или ). Модуль вектора  равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняется правилу правого винта (рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваются псевдовекторами или аксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор  направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор  (рис.7). Размерность угловой скорости dim =T1, а ее единица — ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

т. е.

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2. Так как промежутку времени t = T соответствует  = 2, то  = 2/T, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

откуда

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор  сонаправлен вектору  (рис.8), при замедлен­ном — противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота , угловая скорость , угловое ускорение ) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (=const)

      

где  0 — начальная угловая скорость.

43. Равномерное и равнопеременное вращения

Если угловая скорость тела остается во все время движения по­стоянной (=const), то вращение тела называется равномерным. Найдем закон равномерного вращения. Из формулы имеем .

Отсюда, считая, что в начальный момент времени t=0 угол , и беря интегралы слева от до , а справа от 0 до t, получим окончательно

.

Из равенства следует, что при равномерном вращении, когда

и .

В технике скорость равномерного вращения часто определяют числом оборотов в минуту, обозначая эту величину через n об/мин. Найдем зависимость между n об/мин и 1/с. При одном обороте тело повернется на угол , а при n оборотах на ; этот поворот делается за время t = 1 мин = 60 сек. Из равенства следует тогда, что

.

Если угловое ускорение тела во все время движения остается постоянным , то вращение называется равнопеременным. Найдем закон равнопеременного вращения, считая, что в начальный момент времени t=0 угол , а угловая скорость ( - начальная угловая скорость).

Из формулы имеем . Интегрируя левую часть в пределах от до , а правую - в пределах от 0 до t, найдем ,

или .

Вторично интегрируя, найдем отсюда закон равнопеременного вращения

.

Если величины и имеют одинаковые знаки, то вращение будет равноускоренным, а если разные - равнозамедленным.

44. Скорости и ускорения точек вращающегося тела.

Установив характеристики движения всего тела в целом, перейдем к изучению движения отдельных его точек.

Скорости точек тела. Рассмотрим какую-нибудь точку М твердого тела, находящуюся на расстоянии h от оси вращения (см. рис.13). При вращении тела точка М будет описывать окружность радиуса h, плоскость которой перпендикулярна оси вращения, а центр С лежит на самой оси. Если за время проис­ходит элементарный поворот тела на угол , то точка М при этом совершает вдоль своей траектории элементарное перемещение . Тогда числовое значение скорости точки будет равно отно­шению к , т.е

или .

Скорость в отличие от угловой скорости тела называют иногда еще линейной или окружной скоростью точки М.

Таким образом, числовое значение скорости точки вращающегося твердого тела равно произведению угловой скорости тела на расстоя­ние от этой точки до оси вращения.

Направлена скорость по касательной к описываемой точкой окружности или перпендикулярно плоскости, проходящей через ось вращения и точку М.

Так как для всех точек тела имеет в данный момент времени одно и то же значение, то скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения.

 

Рис.16 Рис. 15

 

2. Ускорения точек тела. Для нахождения ускорения точки м воспользуемся формулами , .

В нашем случае . Подставляя значение в выражения и , получим:

или окончательно:

, .

Касательная составляющая ускорения направлена по каса­тельной к траектории (в сторону движения при ускоренном вра­щении тела и в обратную сторону при, замедленном); нормальная составляющая всегда направлена по радиусу МС к оси вращения (рис.16). Полное ускорение точки М будет или .

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом , который вычисляется по формуле . Подставляя сюда зна­чения и , получаем .

Так как и имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональ­ны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол с радиусами описываемых ими окруж­ностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.18.

 

Рис.17 Рис.18

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]