Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект_Антенны.docx
Скачиваний:
1047
Добавлен:
17.03.2016
Размер:
3.14 Mб
Скачать

Антенны

Антенны – это устройства, согласующие искусственную систему канализации электромагнитных волн (ЭМВ) с окружающей естественной средой их распространения.

Антенны являются неотъемлемой составной частью любой системы радиосвязи, которую используют электромагнитные волны в технологических целях. Помимо согласования между собой искусственных и естественных сред распространения ЭМВ, антенны могут выполнять ряд других функций, важнейшей из которых является пространственная и поляризационная селекция принимаемых и излучаемых ЭМВ.

Справка:

Согласованные системы – это системы, которые передают друг другу максимум предназначенной для передачи электромагнитной мощности.

Различают приемные и передающие антенны.

Передающие антенны

Структурная схема

1 – вход антенны, к которому подключен питающий волновод от передатчика;

2 – согласующее устройство, которое обеспечивает режим бегущих волн в питающем волноводе;

3 – распределительная система, которая обеспечивает требуемое пространственное амплитудно-фазовое распределение излучающих полей;

4 излучающая система (излучатель), обеспечивает заданные поляризационные и направленные излучения ЭМВ.

Приемные антенны

Структурная схема

1 – выход антенны, к которому подключен волновод, соединяющий антенну с приемником;

2 – согласующее устройство;

3 – интегратор – устройство, обеспечивающее взвешенное когерентно-синфазное суммирование пространственных электромагнитных полей;

4 – принимающая система, обеспечивает поляризационную и пространственную селекцию ЭМВ, поступающих в антенну из окружающей ее естественной среды.

Справка:

  1. Элементы структуры передающей и приемной антенн, обозначенные одинаковыми цифрами, могут иметь идентичные конструкции, в следствии чего в отрыве от системы, в которой антенны функционируют, отличить передающую антенну от приемной и наоборот невозможно.

  2. Существуют приемно-передающие антенны.

Классификация антенн

Для систематизации разнообразных типов антенн их объединяют по ряду общих признаков. Классификационные признаки могут быть:

  • рабочий диапазон волн;

  • общность конструкции;

  • принцип роботы;

  • назначение.

Классы могут быть разбиты на подклассы и т. д.

По назначению все антенны делятся на два больших класса:

  • передающие;

  • приемные.

В эти два класса входят подтипы:

  1. антенны стоячей волны;

  2. антенны бегущей волны;

  3. апертурные антенны;

  4. антенны с обработкой сигналов;

  5. активные антенные решетки;

  6. сканирующие антенные решетки.

Основные задачи теории антенн

Существует две задачи:

  • задача анализа свойств конкретных антенн;

  • задача проектирования антенн по заданным исходным требованиям к ним.

Задачу анализа следует решать исходя из условий: искомые ЭМВ должны удовлетворять уравнения Максвелла, граничным условиям на поверхности раздела сред и условиям излучения Зоммерфельда.

В таких жестких условиях постановки решения задач проведение анализа возможно только для некоторых частных случаев (например для симметрического электрического вибратора).

Распространены приближенные методы решения задач анализа, по которым эти задачи разделяют на две части:

- внутреннюю задачу;

- внешнюю задачу.

Внутренняя задача призвана определить распределение токов в антенне реальных или эквивалентных. Внешняя задача состоит в определении поля излучения антенны по известному распределению токов ней. При решении внешней задачи широко используется метод суперпозиции, заключающийся в разбиении антенны на элементарные излучатели и последующее суммирование полей.

Задача проектирования антенны состоит в нахождении геометрической формы и размеров конструкции, обеспечивающие ее требуемые функциональные свойства. Решение задач проектирования (синтеза) антенн возможно:

  • посредством применения результатов анализа конкретных типов антенн и метода последовательных приближений, то есть путем изменения параметров (этап параметрической оптимизации) с последующим сравнением электрических характеристик, полученных таким образом новых вариантов известных антенн;

  • посредством прямого синтеза, то есть минуя этап параметрической оптимизации. В этом случае задачи проектирования антенн разделяют на две подзадачи:

  1. классическая задача синтеза;

  2. задача конструктивного синтеза.

Первая состоит в описании амплитудно-фазового распределения тока (или поля) на излучателе антенны, которая обеспечивает заданные функциональные свойства антенн. Решение данной подзадачи еще не определяет конструкцию антенны, оно определяет только требования к ее распределению.

Вторая направлена на отыскание полной геометрии антенны по заданному амплитудно-фазовому распределению тока (или поля) на излучателе антенны. Эта задача значительно сложнее первой и конструктивно не однозначна, часто ее решают приближенно.

Однако для некоторых типов антенн разработана строга теория конструктивного синтеза.

Передающие антенны

Их характеристики и параметры

Структура электромагнитного поля (ЭМП) антенны

Каждую антенну можно рассматривать как систему элементарных излучателей, сосредоточенных в некотором ограниченном объеме линейного пространства (), ее ЭМ поле как суперпозицию ЭМ полей, составляющих ее элементарных излучателей. Для выявления структуры ЭМП антенны рассмотрим структуру ЭМП элемента прямолинейного гармонически изменяющегося с угловой частотой, тока с постоянной амплитудой и длиной этого элементав линейной неограниченной изотропной среде с постоянными параметрами, ,.

– абсолютная диэлектрическая проницаемость среды;

ε – относительная диэлектрическая проницаемость среды;

- электрическая постоянная;

– абсолютная магнитная проницаемость среды;

- относительная магнитная проницаемость среды;

- магнитная постоянная;

– удельная электрическая проводимость среды;

λ – длина волны.

(1.1)

М – точка наблюдения ЭМП;

r – радиальная координата точки М (расстояние от центра сферической системы координат до точки М);

– азимутальная координата точки М;

- меридиональная координата точки М.

Для рассматривания вибратора Герца, расположенного вдоль оси z, середина которого совмещена с центром сферической системы координат, решение уравнения Максвелла имеют вид (1.1), где

, ,- единичные вектора;

момент электрического тока;

, ,- ортогональные комплексные амплитудные составляющие по сферическим координатам,,вектора напряженности электрического поля;

, , - ортогональные комплексные амплитудные составляющие по сферическим координатам ,,вектора напряженности магнитного поля;

-волновое число;

- длина волны в безграничном пространстве.

Из выражений следует, что ЭМП линейного элемента тока представляет собой ортогональные в пространстве волны напряженности электрического и магнитного полей. При этом скорость изменения амплитуды каждой волны определяется относительным удалением точки от центра вибратора.

Различают три области поля:

  1. Область дальнего поля .

  2. Область промежуточного поля .

  3. Область ближнего поля .

Для области дальнего поля выражения принимают вид:

В дальней области ЭМП обладает следующими свойствами:

  1. ЭМП представляет собой сферическую систему – поперечную ЭМВ (Т-волна).

  2. Составляющие волны иортогональны и синфазные.

  3. Амплитуды поперечных составляющих волны изменяются обратно пропорционально расстоянию.

  4. Угловое распределение составляющих волн ине зависит от расстояния r.

  5. Поток энергии (мощность) излучения всегда направлен радиально.

  6. Отношение составляющих волн ив каждой точки пространства равно константе (так называемому характеристическому сопротивлению):

Для воздуха: .

В областях промежуточного и ближнего полей помимо сферической поперечной волны существуют локальные реактивные поля, интенсивность которых очень быстро увеличивается с уменьшением r. Эти поля содержат некоторый запас ЭМ энергии, которой они периодически обмениваются с антенной (с периодом ). Данные поля обусловливают реактивную составляющую входного сопротивления антенны.

Свойства ЭМП определяют функциональные свойства антенны, а свойства ближнего и промежуточного ЭМП определяют стабильность функциональных свойств и широкополосность антенн.

Область дальнего ЭМП часто называют областью излучения, а область ближнего ЭМП – областью индукции.

Для реальных антенн границы областей дальнего, промежуточного и ближнего полей определяют с учетом разности фаз волн, пришедших в точку наблюдения от краев антенны и ее центра.

При допустимой разности фаз в области дальнего поля , равной :

- область дальнего ЭМП будет при ;

- область промежуточного поля ;

- область ближнего поля , где

- расстояние от центра антенны до точки наблюдения;

- максимальный поперечный размер излучающей системы антенны.

Основные характеристики и параметры прередающей антенны

Свойства антенны подразделяются на:

  • Радиотехнические;

  • Конструктивные;

  • Эксплуатационные;

  • Экономические;

Функциональные свойства целиком определяются сигнальными параметрами.

Характеристики и параметры передающей антенны:

  • Комплексная векторная характеристика направленности (ХНА) ;

  • Амплитудная ХНА ;

  • Фазовая ХНА ;

  • Поляризационная ХНА ;

  • Сопротивление излучения антенны ;

  • Входное сопротивление антенны ;

  • Коэффициент направленного действия антенны ;

  • Коэффициент полезного действия (КПД) антенны ;

  • Коэффициент усиления антенны ;

  • Коэффициент рассеивания антенны ;

  • Действующая длина антенны ;

  • Диапазон рабочих частот антенны ;

  • Эквивалентная изотропно-излучаемая мощность ;

  • Электрическая прочность антенны.

  1. Комплексная векторная характеристика направленности

Комплексная векторная ХНА – это зависимость от направления (поляризация, фаза) электрического поля излученных антенной волн в равноудаленных от нее точках (на поверхности сферы радиуса r).

В общем случае комплексная ХНА состоит из трех сомножителей:

,

где - сферические координаты точки наблюдения поля излученной антенной волны.

  1. Амплитудная ХНА

Амплитудная ХНА – это зависимость от направления амплитуды напряженности электромагнитной волны, излученной антенной в равноудаленных от нее точках.

Обычно рассматривают нормированную амплитудную ХНА:

,

где - направление в котором значение амплитудной ХНА максимально.

  1. Диаграмма направленности антенны (ДНА)

Диаграмма направленности антенны – сечение амплитудной ХНА плоскостями, проходящими через направление или перпендикулярно ему.

Наиболее часто используется сечение взаимно ортогональными плоскостями.

Диаграмма направленности имеет лепестковую структуру. Лепестки характеризуются амплитудой и шириной.

Ширина лепестка ДНА – угол в пределах которого амплитуда лепестка изменяется в допустимых заданных пределах.

Лепестки бывают:

  • Главный лепесток;

  • Боковые лепестки;

  • Задний лепесток.

Ширину лепестков определяют по нулям или по уровню половины максимальной мощности.

  • По полю = 0.707;

  • По мощности = 0.5;

  • В логарифмическом масштабе = -3 дБ.

Нормированная амплитудная ХНА по мощности связана с амплитудной ХНА по полю соотношением:

Для изображения ДНА используют полярные и прямоугольные системы координат и три вида масштаба:

  • Линейный (по полю);

  • Квадратичный (по мощности);

  • Логарифмический

Фазовая ХНА

Фазовая ХНА - это зависимость от направления фазы гармонической электромагнитной волны в области дальнего поля в равноудаленных от начала координат точках в фиксированный момент времени.

Справка:

Фазовый центр антенны – точка в пространстве, относительно которой значение фазы в дальней зоне не зависит от направления и изменяется скачком на при переходе от одного лепестка ХНА к другому.

Для точечного источника электромагнитной волны, излучающего сферическую волну, поверхность равных фаз имеет вид сферы.

  1. Поляризационная ХНА

Электромагнитная волна характеризуется поляризацией.

Поляризация – пространственная ориентация вектора Е, рассматриваемая в любой фиксированной точке дальнего поля в течении одного колебания.

В общем случае конец вектора Е за один период колебания в любой фиксированной точке пространства описывает эллипс, который расположен в плоскости, перпендикулярной направлению распространения волны (эллипс поляризации).

Поляризация характеризуется:

  • параметрами эллипса;

  • пространственной ориентацией эллипса;

  • направлением вращения вектора Е.

  1. Сопротивление излучения антенны

Сопротивление излучения антенны – это волновое сопротивление окружающего антенну пространства , перещитанное ею на вход, или в любое сечение питающего ее волновода, где понятие полного тока имеет смисл и может быть определено.

Сопротивление излучения может бать посчитано по формуле:

сс,

где I – значение полного тока в данном месте антенны или питающего ее двухпроводной линии, которая эквивалентна питающему полому волноводу.

  1. Входное сопротивление антенны

Входное сопротивление антенны – это отношение комплексных амплитуд гармонических напряжений и токов на входных клеммах антенны.

Входное сопротивление антенны характеризует антенну, как нагрузку для питающей линии.

Данный параметр используют в основном для линейных антенн, т.е. антенн, у которых входные напряжения и токи имеют ясный физический смысл и могут быть измерены.

Для антенн СВЧ обычно задают размеры сечения их входного волновода.

  1. Коэффициент полезного действия (КПД) антенны

Определяет эффективность передачи антенной в окружающие пространство.

- сопротивление потерь

Справка:

С увеличением f КПД антенны увеличивается от единиц процентов на длинных волнах, до 95-99% на СВЧ.

  1. Электрическая прочность и высотность антенны

Электрическая прочность антенны – способность антенн выполнять свои функции без электрического пробоя диэлектрика в ее конструкции или окружающей среды при увеличении поступающей на ее вход мощности электромагнитной волны.

Количественно электрическую прочность антенны характеризуют предельно допустимой мощностью и соответствующей ей критической напряженностью электрического поля, при которых начинается пробой.

  1. Высотность антенны

Высотность антенны – это способность антенн выполнять свои функции без электрического пробоя окружающей атмосферы при увеличении высоты расположения этой антенны при заданной мощности передачи.

Справка :

С увеличением высоты электрическая прочность сначала уменьшается, достигая минимума на высотах 40-100 км, а затем вновь возрастает.

  1. Диапазон рабочих частот антенны

Интервал частот от fmax до fmin, в пределах которого ни один из параметров и характеристик антенны не выходит за пределы, указанные в технических условиях.

Обычно диапазон определяется тем параметром, значение которого при изменении частоты раньше других выходит из допустимых пределов. Чаще всего этим параметром оказывается входное сопротивление антенны.

Количественными оценками диапазонных свойств антенны являются полоса пропускания и коэффициент пропускания:

Часто пользуются относительной полосой пропускания

,

где

Антенны по параметру делят на:

  • узкополосные ();

  • широкополосные ();

  • сверхширокополосные (частотно-независимые антенны) ().

  1. Коэффициент направленного действия (КНД)

Коэффициент направленного действия антенны в заданном направлении - это число, показывающие во сколько раз значение вектора Пойнтинга в рассматриваемом направлении в фиксированной точке дальней зоны отличается от значения вектора Пойнтинга в этой же точке если заменить рассматриваемую антенну на абсолютно-ненаправленную (изотропную) антенну при условии равенства их излучаемых мощностей.

Справка:

Обычно указывают максимальное значение КНД антенны в направлении максимума ее излучения.

Вибратор: КНД=0.5;

Полуволновой симметричный вибратор: КНД=1,64;

Рупорная антенна: КНД [50;100];

Зеркальная антенна: КНД [1000;10000];

Антенны космических аппаратов: КНД [10000;100000000];

Ограничителем верхнего предела КНД являются технологические погрешности изготовления и влияние условий эксплуатации.

Минимальные значения максимумов КНД реальных антенн всегда >1, т.к. абсолютно ненаправленных антенн не существует.

КНД связан по полю с нормированной амплитудной ХНА:

,

где максимальное значение КНД в направлении максимального излучения антенны, в котором .

КНД показывает тот выигрыш в мощности, который обеспечивает применение направленной антенны, но не учитывает тепловые потери в ней.

  1. Коэффициент усиления антенны

Коэффициент усиления антенны в данном направлении – это число, показывающие выигрыш в мощности от применения направленной антенны с учетом тепловых потерь в ней:

  1. Эквивалентная изотропно-излучаемая мощность

Эквивалентная изотропно-излучаемая мощность - это произведение подводимой к антенне мощности на максимальное значение ее коэффициента усиления.

  1. Коэффициент рассеивания антенны

Коэффициент рассеивания антенны – это число, показывающие долю излучаемой мощности, приходящейся на долю боковых и задних лепестков.

- определяет мощность, приходящуюся на главный лепесток ХНА

  1. Действующая длина антенны

Действующая длина антенны- длина гипотетического прямолинейного вибратора с равномерным распределением тока по всей его длине, который в направлении максимума своего излучения создает ту же величину напряженности поля, что и рассматриваемая антенна с той же величиной тока на входе.

В среде с волновым сопротивлением действующая длина антенны определяется выражением: