Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Химия на английском. 2

.pdf
Скачиваний:
158
Добавлен:
16.03.2016
Размер:
401.57 Кб
Скачать

6.30.Hydrosulfuric acid, H2S(aq), is a weak diprotic acid that is sometimes used in analytical work. Calculate the pH and [HS(aq)] of a 7.5 10–3 mol/L solution.

6.31.A 0.10 mol/L solution of a weak monoprotic acid was found to be 5.0% dissociated. Calculate Ka.

6.32.Oxalic acid, HOOCCOOH, is a weak diprotic acid that occurs naturally in some foods, including rhubarb. Calculate the pH of a solution of oxalic acid that is prepared by dissolving 2.5 g in 1.0 L of water. What is the concentration of hydrogen oxalate, HOOCCOO−, in the solution?

6.33.A sample of blood was taken from a patient and sent to a laboratory for testing. Chemists found that the blood pH was 7.40. They also found that the hydrogen

carbonate ion concentration was 2.6 10–2 mol/L. What was the concentration of carbonic acid in the blood?

6.34.An aqueous solution of household ammonia has a molar concentration of 0.105 M. Calculate the pH of the solution.

6.35.Hydrazine, N2H4, has been used as a rocket fuel. The concentration of an aqueous solution of hydrazine is 5.9 10–2 mol/L. Calculate the pH of the solution.

6.36.Morphine, C17H19NO3, is a naturally occurring base that is used to control pain. A 4.5 10–3 mol/L solution has a pH of 9.93. Calculate Kb for morphine.

6.37.Methylamine, CH3NH2, is used to manufacture several prescription drugs. Calculate [OH] and pOH of a 0.25 mol/L aqueous solution of methylamine.

6.38.At room temperature, trimethylamine, (CH3)3N, is a gas with a strong ammonialike odour. Calculate [OH] and the percent of trimethylamine molecules that react with water in a 0.22 mol/L aqueous solution.

6.39.An aqueous solution of ammonia has a pH of 10.85. What is the concentration of the solution?

6.40.Use the table of Ka values in Appendix 4 to list the conjugate bases of the following acids in order of increasing base strength: formic acid, HCOOH; hydrofluoric acid, HF(aq); benzoic acid, C6H5COOH; phenol, C6H5OH.

6.41.Compare Kb for ammonia, NH3, and for trimethylamine, (CH3)3N. Which is the stronger acid, NH4+ or (CH3)3NH+?

6.42.A buffer solution is made by mixing 250 mL of 0.200 mol/L aqueous ammonia and 400 mL of 0.150 mol/L ammonium chloride. Calculate the pH of solution.

31

6.43.A buffer solution is made by mixing 200 mL of 0.200 mol/L aqueous ammonia and 450 mL of 0.150 mol/L ammonium chloride. Calculate the pH of solution.

6.44.A buffer solution contains 0.200 mol/L nitrous acid, HNO2(aq), and 0.140 mol/L potassium nitrite, KNO2(aq). What is the pH of the buffer solution?

6.45.A buffer solution is prepared by dissolving 1.80 g of benzoic acid, C6H5COOH, and 1.95 g of sodium benzoate, NaC6H5COO, in 800 mL of water. Calculate the pH of the buffer solution.

6.46.Predict whether an aqueous solution of each salt is neutral, acidic, or basic.

a) NaCN;

c) Mg(NO3)2;

b) LiF;

d) NH4I.

6.47. Is the solution of each salt acidic, basic, or neutral? For solutions that are not neutral, write equations that support your predictions.

a) NH4BrO4;

c) NaOBr;

b) NaBrO4;

d) NH4Br.

6.48.Compare Ka for benzoic acid, C6H5COOH, and for phenol, C6H5OH. Which is the stronger base, C6H5COO(aq) or C6H5O(aq)? Explain your answer.

6.49.Sodium hydrogen sulfite, NaHSO3, is a preservative that is used to prevent the discolouration of dried fruit. In aqueous solution, the hydrogen sulfite ion can act as

either an acid or a base. Predict whether NaHSO3 dissolves to form an acidic solution or a basic solution. (Refer to Appendix 4 for ionization data.)

6.50.Sodium carbonate and sodium hydrogen carbonate both dissolve to form basic solutions. Comparing solutions with the same concentration, which of these salts forms the more basic solution? Explain.

6.51.Potassium phosphate and potassium dihydrogen phosphate both dissolve to form basic solutions. Comparing solutions with the same concentration, which of these salts forms the more basic solution? Explain.

6.52.Determine whether or not each ion reacts with water. If the ion does react, write the chemical equation for the reaction. Then predict whether the ion forms an acidic

solution or a basic solution.

a) Br;

c) CH3NH3+;

b) ClO4;

d) OCl.

6.53. A chemist measures the pH of aqueous solutions of Ca(OH)2, CaF2, NH4NO3, KNO3, and HNO3. Each solution has the same concentration. Arrange the solutions from most basic to most acidic.

32

6.54. Write the balanced chemical equation that represents the dissociation of each compound in water. Then write the corresponding solubility product expression.

a) copper(I) chloride;

d) calcium phosphate.

b) barium fluoride;

e) silver carbonate;

c) silver sulfate;

f) ammonium magnesium phosphate.

6.55.The maximum solubility of silver cyanide, AgCN, is 1.5 10–8 mol/L at 25°C. Calculate Ksp for silver cyanide.

6.56.A saturated solution of copper(II) phosphate, Cu3(PO4)2 , has a concentration of 6.1 10–7 g Cu3(PO4)2 per 100 mL of solution at 25 °C. What is Ksp for Cu3(PO4)2?

6.57.A saturated solution of CaF2 contains 1.2 1020 molecules of calcium fluoride per liter of solution. Calculate Ksp for CaF2.

6.58.Ksp for silver chloride, AgCl, is 1.8 10–10 at 25 oC.

a)Calculate the molar solubility of AgCl in a saturated solution at 25 °C.

b)How many molecules of AgCl are dissolved in 1.0 L of saturated silver chloride solution?

c)What is the percent (m/v) of AgCl in a saturated solution at 25 °C?

6.59.Calculate the molar solubility of Fe(OH)3 at 25 °C (ref. Appendix 6).

6.60.Calculate the solubility (in mol/L and in g/L) of Zn(IO3)2 in a saturated solution.

6.61.Determine the molar solubility of AgCl:

a) in pure water; b) in 0.15 mol/L NaCl.

6.62.Determine the molar solubility of lead(II) iodide, PbI2, in 0.050 mol/L NaI.

6.63.Calculate the molar solubility of calcium sulfate, CaSO4:

a) in pure water; b) in 0.25 mol/L Na2SO4.

6.64. Calculate the molar solubility of lead(II) chloride, PbCl2: a) in pure water; b) in 0.10 mol/L CaCl2.

6.65.The maximum solubility of barium fluoride, BaF2, at 25 °C, is 1.3 g/L.

a)Calculate Ksp for BaF2 at 25 °C.

b)Calculate the solubility of BaF2 in molecules of BaF2/L.

6.66.A solution of BaCl2 is added to a solution of Na2SO4.

a)Calculate the solubility (in mol/L and in g/L) of BaSO4 in pure water.

b)Calculate the solubility (in mol/L and in g/L) of BaSO4 in 0.085 M Na2SO4.

33

6.67.A solution contains 0.15 mol/L of NaCl and 0.0034 mol/L Pb(NO3)2. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate.

6.68.One drop (0.050 mL) of 1.5 mol/L potassium chromate, K2CrO4, is added to 250 mL of 0.10 mol/L AgNO3. Does a precipitate form?

6.69.A chemist adds 0.010 g of CaCl2 to 500 mL of 0.0015 mol/L sodium carbonate, Na2CO3. Does a precipitate of calcium carbonate form?

6.70.0.10 mg of magnesium chloride, MgCl2, is added to 250 mL of 0.0010 mol/L NaOH. Does a precipitate of magnesium hydroxide form?

6.71.100 mL of 1.0 10–3 mol/L Pb(NO3)2 is added to 40 mL of 0.040 mol/L NaCl. Does a precipitate form?

6.72.25 mL of 0.10 mol/L NaOH is added to 500 mL of 0.00010 mol/L cobalt(II) chloride, CoCl2. Does a precipitate form?

6.73.250 mL of 0.0011 mol/L Al2(SO4)3 is added to 50 mL of 0.022 mol/L BaCl2. Does a precipitate form? Include a balanced chemical equation for the formation of the possible precipitate.

6.74.A chemist adds 1.0 mg of NaI to 50 mL of a 0.010 mol/L solution of Pb(NO3)2. Does a precipitate form?

6.75.How many milligrams of Na2SO4 will just begin to precipitate calcium sulfate, CaSO4, from 500 mL of a 0.10 mol/L solution of CaCl2?

6.76.How many drops of 0.0010 mol/L silver nitrate solution will just begin to precipitate AgCl from 5000 mL of a 0.90% (m/v) solution of NaCl? (Assume that one drop equals 0.050 mL.)

6.77.Compare the values of solubility products constants for two salts with the same

anions: Ksp for CaSO4

is 2.4 10–5, and Ksp for SrSO4 is 3.2 10–7. Suppose that you have a

 

2+

 

2+

ions. You slowly

1.0 L solution that is 0.20 mol/L in Ca

ions, and 0.20 mol/L in Sr

 

begin to add solid Na2SO4.

a)Explain why SrSO4 precipitates first.

b)How many milligrams of Al2(SO4)3 will just begin to precipitate SrSO4 from the solution?

34

7.ELECTROCHEMISTRY

7.1.Write a net ionic equation for a reaction in which:

a)Fe2+ acts as an oxidizing agent;

b)Al acts as a reducing agent;

c)Au3+ acts as an oxidizing agent;

d)Cu acts as a reducing agent;

e)Sn2+ acts as an oxidizing agent and as a reducing agent.

7.2.Write the oxidation half-reaction, the reduction half-reaction, and the overall cell reaction for each of the following galvanic cells. Identify the anode and the cathode in

each case. (In part (b), platinum is present as an inert electrode.)

a)Sn(s) | Sn2+(aq) || Tl+(aq) | Tl(s);

b)Cd(s) | Cd2+(aq) || H+(aq) | H2(g) | Pt(s).

7.3.A galvanic cell involves the overall reaction of iodide ions with acidified permanganate ions to form manganese(II) ions and iodine. The salt bridge contains potassium nitrate.

a)Write the half-reactions, and the overall cell reaction.

b)Identify the oxidizing agent and the reducing agent.

c)The inert anode and cathode are both made of graphite. Solid iodine forms on one of them. Which one?

7.4.Look up the standard reduction potentials of the following half-reactions (ref. Appendix 7). Predict whether acidified nitrate ions will oxidize manganese(II) ions to manganese(IV) oxide under standard conditions.

MnO2(s) + 4 H+(aq) + 2e− Mn2+(aq) + 2 H2O(l);

NO3(aq) + 4 H+(aq) + 3e− NO(g) + 2 H2O(l).

7.5. Predict whether each reaction is spontaneous or non-spontaneous under standard conditions.

a) 2 Cr(s) + 3 Cl2(g) 2 Cr3+(aq) + 6 Cl(aq).

b)Zn2+(aq) + Fe(s) Zn(s) + Fe2+(aq).

c)5 Ag(s) + MnO4(aq) + 8 H+(aq) 5 Ag+(aq) + Mn2+(aq) + 4 H2O(l).

7.6.Predict whether each reaction is spontaneous or non-spontaneous under standard conditions in an acidic solution.

a)H2O2(aq) H2(g) + O2(g).

b)3 H2(g) + Cr2O72–(aq) + 8 H+(aq) 2 Cr3+(aq) + 7 H2O(l).

7.7.Determine the standard cell potential for each of the following redox reactions.

a)CuSO4(aq) + Ni(s) NiSO4(aq) + Cu(s).

b)Fe(s) + 4 HNO3(aq) Fe(NO3)3(aq) + NO(g) + 2 H2O(l).

35

7.8. Determine if each of the following balanced redox reactions is spontaneous as written, calculate the cell potential.

a) Sn(s) + 2 Cu+(aq) Sn2+(aq) + 2 Cu(s).

b)Mg(s) + Pb2+(aq) Pb(s) + Mg2+(aq).

c)2Mn2+(aq) + 8H2O(l) + 10Hg2+(aq) 2MnO4(aq) + 16H+(aq) + 5Hg22+(aq).

7.9.Write the two half-reactions for the following redox reactions. Subtract the two reduction potentials to find the standard cell potential for a galvanic cell in which this reaction occurs.

a) Cl2(g) + 2 Br(aq) 2 Cl(aq) + Br2(l).

b)2 Cu+(aq) + 2 H+(aq) + O2(g) 2 Cu2+(aq) + H2O2(aq).

7.10.Determine the standard cell potential for each of the following redox reactions.

a) 3 Mg(s) + 2 Al3+(aq) 3 Mg2+(aq) + 2 Al(s). b) 2 K(s) + F2(g) 2 K+(aq) + 2 F(aq).

c) Cr2O72–(aq) + 14 H+(aq) + 6 Ag(s) 2 Cr3+(aq) + 6 Ag+(aq) + 7 H2O(l).

7.11. The cell potential for the following galvanic cell is given: Eocell = 1.750 V. Zn | Zn2+ (1 mol/L) || Pd2+ (1 mol/L) | Pd.

Determine the standard reduction potential for the following half-reaction: Pd2+(aq) + 2e− Pd(s).

7.12. These equations represent overall cell reactions. Determine the standard potential for each cell and identify the reactions as spontaneous or nonspontaneous as written.

a) 2 Al3+(aq) + 3 Cu(s) 2 Cu2+(aq) + 2 Al(s). b) Hg2+(aq) + 2 Cu+(aq) 3 Cu2+(aq) + Hg(l).

c)Cd(s) + 2 NO3(aq) + 4 H+(aq) 2 Cd2+(aq) + 2 NO2(g) + 2 H2O(l).

7.13.Write the standard cell notation for the following cells in which the half-cell listed is connected to the standard hydrogen electrode. An example is Na | Na+ || H+ | H2.

Determine the voltage of the cells formed.

a) Zn | Zn2+;

d) Cu | Cu2+;

b) Hg | Hg2+;

e) Al | Al3+.

c) Ga | Ga3+;

f) NO2 | NO3.

7.14.Calculate the cell potential of voltaic cells that contain the following pairs of half-

cells.

a)Chromium in a solution of Cr3+ ions; copper in a solution of Cu2+ ions.

b)Zinc in a solution of Zn2+ ions; platinum in a solution of Pt2+ ions.

c)A half-cell containing both HgCl2 and Hg2Cl2; lead in a solution of Pb2+ ions.

d)Tin in a solution of Sn2+ ions; iodine in a solution of Iions.

7.15.Predict the products of the electrolysis of a 1 mol/L solution of sodium chloride.

36

7.16.The electrolysis of molten calcium chloride produces calcium and chlorine. Write

a)the half-reaction that occurs at the anode;

b)the half-reaction that occurs at the cathode;

c)the chemical equation for the overall cell reaction.

7.17.For the electrolysis of molten lithium bromide, write

a)the half-reaction that occurs at the negative electrode;

b)the half-reaction that occurs at the positive electrode;

c)the net ionic equation for the overall cell reaction.

7.18.Explain why calcium can be produced by the electrolysis of molten calcium chloride, but not by the electrolysis of aqueous calcium chloride.

7.19.One half-cell of a galvanic cell has a nickel electrode in a 1 mol/L nickel(II) chloride solution. The other half-cell has a cadmium electrode in a 1 mol/L cadmium chloride solution.

a)Find the cell potential.

b)Identify the anode and the cathode.

c)Write the oxidation half-reaction, the reduction half-reaction, and the overall cell reaction.

7.20.An external voltage is applied to change the galvanic cell in question 7.21 into an electrolytic cell. Repeat parts (a) to (c) for the electrolytic cell.

7.21.Calculate the mass of zinc plated onto the cathode of an electrolytic cell by a current of 750 mA in 3.25 h.

7.22.How many minutes does it take to plate 0.925 g of silver onto the cathode of an electrolytic cell using a current of 1.55 A?

7.23.The nickel anode in an electrolytic cell decreases in mass by 1.20 g in 35.5 min. The oxidation half-reaction converts nickel atoms to nickel(II) ions. What is the constant current?

7.24.The following two half-reactions take place in an electrolytic cell with an iron anode and a chromium cathode.

Oxidation: Fe(s) Fe2+(aq) + 2e−.

Reduction: Cr3+(aq) + 3e− Cr(s).

During the process, the mass of the iron anode decreases by 1.75 g.

a)Find the change in mass of the chromium cathode.

b)Explain why you do not need to know the electric current or the time to complete part (a).

37

PERIODIC TABLE

 

 

 

I

 

 

II

 

 

III

 

 

IV

 

 

 

 

V

1

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydrogen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1.0079

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Li

 

 

Be

 

 

 

 

B

 

 

 

 

C

 

N

 

 

Lithium

 

Beryllium

 

Boron

 

 

Carbon

Nitrogen

 

 

3

6.94

4

9.012

5

10.81

6

12.011

7

14.0067

3

 

Na

 

 

Mg

 

 

 

 

Al

 

 

 

 

Si

 

P

 

 

Sodium

 

Magnesium

Aluminum

 

Silicon

Phosphorus

 

 

11

22.99

12

24.305

13

26.98

14

28.085

15

30.974

 

 

K

 

 

Ca

 

Sc

 

 

 

Ti

 

 

 

 

V

 

 

 

Potassium

 

Calcium

Scandium

 

Titanium

Vanadium

4

 

19

39.098

20

40.08

21

44.956

22

 

47.90

23

50.94

 

 

Cu

 

 

Zn

 

 

Ga

 

 

 

 

Ge

 

As

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copper

 

 

Zinc

 

Gallium

 

Germanium

Arsenic

 

 

29

63.54

30

65.38

31

69.72

32

 

72.59

33

74.92

 

 

Rb

 

 

Sr

 

Y

 

 

 

Zr

 

 

 

 

Nb

 

 

 

Rubidium

 

Strontium

 

Yttrium

 

Zirconium

Niobium

5

 

37

85.47

38

87.62

39

88.91

40

 

91.22

41

92.906

 

 

Ag

 

 

Cd

 

 

 

In

 

 

 

 

Sn

 

Sb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silver

 

Cadmium

 

Indium

 

 

Tin

 

 

 

Antimony

 

 

47

107.87

48

112.41

49

114.82

50

118.69

51

121.75

 

 

Cs

 

 

Ba

 

 

La–Lu

 

Hf

 

 

 

 

Ta

 

 

 

 

Cesium

 

Barium

 

 

 

Hafnium

Tantalum

6

 

55

132.905

56

137.33

 

 

 

 

72

178.49

73

180.95

 

 

Au

 

 

Hg

 

 

 

Tl

 

 

 

 

Pb

 

Bi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gold

 

Mercury

Thallium

 

 

Lead

Bismuth

 

 

79

196.97

80

200.5

81

204.3

82

 

207.2

83

208.98

7

 

Fr

 

 

Ra

 

Ac–(Lr)

 

Rf

 

 

 

 

Db

 

 

Francium

 

Radium

 

Rutherfordium

Dubnium

 

 

87

[223]

88

226.03

 

 

 

 

104

[261]

105

[262]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lanthanides

 

La

Lanthanum

 

Ce

 

Cerium

 

 

Pr

Praseodymium

 

 

 

57

138.905

 

58

 

140.12

 

59

 

140.9077

 

 

 

 

 

 

 

 

 

Gd

 

Gadolinium

 

Tb

Terbium

 

Dy

Dysprosium

 

 

Ho

 

Holmium

64

 

 

157.2

 

65

158.93

 

66

 

162.50

 

67

 

164.93

 

 

Actinides

 

Ac

Actinium

 

Th

 

Thorium

 

 

Pa

Protactinium

 

 

 

89

[227]

 

90

 

232.038

 

91

 

231.036

 

 

 

 

 

 

 

 

 

Cm

Curium

 

Bk

Berkelium

 

Cf

Californium

 

 

Es

Einsteinium

96

 

 

[247]

 

97

[247]

 

98

 

 

[251]

 

99

 

[254]

38

OF CHEMICAL ELEMENTS

 

 

 

 

 

 

 

 

Appendix 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI

 

VII

 

 

 

 

VIII

 

 

 

 

 

 

 

 

(H)

 

 

 

 

 

 

 

 

He

 

 

 

 

 

 

 

 

 

 

 

 

 

Helium

 

 

 

 

 

 

 

 

 

 

 

 

2

4.0026

 

O

 

 

F

 

 

 

 

 

 

 

 

Ne

Oxygen

 

Fluorine

 

 

 

 

 

 

 

 

Neon

8

15.999

9

 

18.998

 

 

 

 

 

 

 

10

20.179

 

S

 

 

Cl

 

 

 

 

 

 

 

 

Ar

 

Sulfur

 

Chlorine

 

 

 

 

 

 

 

 

Argon

16

32.06

17

 

35.453

 

 

 

 

 

 

 

18

39.948

Cr

 

Mn

 

 

Fe

 

Co

 

 

 

Ni

 

Chromium

Manganese

 

Iron

 

Cobalt

 

 

 

Nickel

24

51.996

25

 

54.938

 

26

55.847

27

58.933

 

28

58.70

 

Se

 

 

Br

 

 

 

 

 

 

 

 

Kr

Selenium

 

Bromine

 

 

 

 

 

 

 

 

Krypton

34

78.96

35

 

79.904

 

 

 

 

 

 

 

36

83.80

Mo

 

Tc

 

 

 

Ru

 

Rh

 

 

 

Pd

 

Molybdenum

Technetium

 

Ruthenium

Rhodium

 

 

 

Palladium

42

95.94

43

 

98.906

 

44

101.07

45

102.9

 

46

106.4

 

Te

 

 

I

 

 

 

 

 

 

 

 

Xe

Tellurium

 

Iodine

 

 

 

 

 

 

 

 

Xenon

52

127.6

53

 

126.90

 

 

 

 

 

 

 

54

131.3

W

 

Re

 

 

 

Os

 

Ir

 

 

 

Pt

 

Tungsten

 

Rhenium

 

Osmium

 

Iridium

 

 

 

Platinum

74

183.8

75

 

186.21

 

76

190.2

77

199.2

 

78

195.1

 

Po

 

 

At

 

 

 

 

 

 

 

 

Rn

Polonium

 

Astatine

 

 

 

 

 

 

 

 

Radon

84

[209]

85

 

[210]

 

 

 

 

 

 

 

86

[222]

Sg

 

Bh

 

 

 

Hs

 

Mt

 

 

 

 

 

Seaborgium

 

Bohrium

 

Hassium

Meitnerium

 

 

 

106

[266]

107

[264]

 

108

[277]

109

[268]

 

 

 

 

 

 

 

 

 

 

 

 

Nd

Neodymium

Pm

Promethium

Sm

Samarium

Eu

 

Europium

60

144.24

61

 

[145]

62

 

150.4

63

 

 

151.96

Er

Erbium

Tm

 

Thulium

Yb

Ytterbium

Lu

 

Lutetium

68

167.26

69

 

168.93

70

 

173.04

71

 

 

174.967

U

Uranium

Np

Neptunium

Pu

Plutonium

Am

 

Americium

92

238.029

93

 

237.048

94

 

[244]

95

 

 

[243]

Fm

Fermium

Md

Mendelevium

No

Nobelium

Lr

 

Lawrencium

100

[257]

101

 

[258]

102

 

[255]

103

 

[256]

39

 

 

Elements and Electronegative Components

Appendix 2

 

 

 

 

 

 

 

 

 

Symbol

Name

 

Transcription

Electronegative

Transcription

 

component

 

 

 

 

 

Ac

actinium

 

αk_'tin_i: _əm

 

 

Al

aluminum

 

ə_'lu:m_ə_nəm

 

 

Ag

silver

 

'sil_vər

 

 

Am

americium

 

αm_ə_'ris_i: _əm

 

 

Ar

argon

 

'a:r_gən

 

 

As

arsenic

 

'a:rs_ən_ik

arsenide

'a:rs_ən_aıd

At

astatine

 

α

 

 

 

 

 

' s_tə_ti:n

 

 

Au

gold

 

gould

 

 

B

boron

 

'bo:_rən

boride

'bo:r_aıd

Ba

barium

 

'bαr_i:_əm

 

 

Be

beryllium

 

bə_'ril_i: _əm

beryllide

bə_'ril_aid

Bh

bohrium

 

'bo:r_i: _əm

 

 

Bi

bismuth

 

θ

 

 

 

 

 

'biz_mə

 

 

Bk

berkelium

 

'bə:r_kli: _əm

 

 

Br

bromine

 

'brou_mi:n

bromide

'brou_maıd

C

carbon

 

'ka:r_bən

carbide

'ka:r_baıd

Ca

calcium

 

'kαl_si:_əm

 

 

Cd

cadmium

 

'kαd_mi:_əm

 

 

Ce

cerium

 

'sir_i:_əm

 

 

Cf

californium

 

kalə_'fo:r_ni:_əm

 

 

Cl

chlorine

 

'klo:r_i:n

chloride

'klo:r_aıd

Cm

curium

 

'kju:r_i:_əm

 

 

Co

cobalt

 

'kou_bo:lt

 

 

Cr

chromium

 

'krou_mi:_əm

 

 

Cs

cesium

 

'si:_zi:_əm

 

 

Cu

copper

 

'kop_ər

 

 

Db

dubnium

 

'du:b_ni:_əm

 

 

Dy

dysprosium

 

dis_'prou_zi:_əm

 

 

Er

erbium

 

'ə:r_bi:_əm

 

 

Es

einsteinium

 

aın_'staın_i:_əm

 

 

Eu

europium

 

yu:_'rou_pi:_əm

 

 

F

fluorine

 

'flu:r_i:n

fluoride

'flu:r_aıd

Fe

iron

 

'aı_ərn

 

 

Fm

fermium

 

'fer_mi:_əm

 

 

Fr

francium

 

'frαn_si:_əm

 

 

40