Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ / Концепции современного естествознания_Бочкарев А.И, Бочкарева Т.С, Саксонов С.В_Учебник_ТГУС, 2008 -386с.doc
Скачиваний:
93
Добавлен:
16.03.2016
Размер:
3.11 Mб
Скачать

2.8.3. Принцип суперпозиции

В физике при изучении линейных систем широко используется принцип суперпозиции.

Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме результатов воздействия каждого отдельного фактора.

Принцип суперпозиции играет большую роль во многих разделах физики и техники, в том числе и в теории колебаний и волновых процессов.

Например, если среда, в которой распространяется негармоническая волна S, линейна, т.е. ее свойства не меняются под воздействием возмущений, создаваемых этой волной, то все эффекты, вызываемые данной негармонической волной, могут быть определены как сумма эффектов, создаваемых каждой из гармонических составляющих (поскольку каждую негармоническую волну можно представить в виде суммы гармоник), т.е. S = S1, + S2 +... + Sn , +...

Особенно плодотворным оказалось применение принципа суперпозиции при изучении микромира. Здесь он стал одним из фундаментальных принципов (наряду с соотношением неопределенностей), составляющих основу математического аппарата квантовой механики. Как известно, состояния микросистем описываются волновыми функциями. Из принципа суперпозиции, например, следует, что если квантово-механическая система может находиться в некоторых конкретных состояниях, описываемых волновыми функ­циями, то физически допустимым будет состояние, изображаемое другой волновой функцией, т.е. су­перпозицией исходных волновых функций. Принцип суперпозиции в описании микромира отражает волновую природу микрочастиц.

2.9. Динамические и статистические закономерности в природе

Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Законы классической механики называются динамическими законами, тем самым подчеркивается, что движение происходит под действием тех или иных сил. Динамические законы имеют строго однозначный характер всех связей и зависимостей.

Зная начальное состояние механической системы, можно однозначно определить ее последующие состояния. Динамические закономерности не допускают какой-либо неопределенности системы. Они действуют во всех автономных, мало зависимых от внешней среды системах с относительно малым количеством входящих в нее элементов (например, характер движения планет Солнечной системы).

Во второй половине XIX в. наряду с динамическими в ряде разделов физики получили широкое развитие статистические методы исследования.

Классическим примером является статистическое рассмотрение тепловых термодинамических процессов. В данном случае рассматриваемая система, в отличие от динамической, включает огромное число отдельных элементов (например, полное число молекул газовой системы). И здесь рассматривается не движение каждой отдельно взятой молекулы, а лишь вероятностные ее характеристики. Затем, используя теорию вероятностей, теорию случайных событий, можно определить усредненные характеристики всей системы и установить статистические закономерности поведения всей системы.

Примером тому может служить установление статистической закономерности между температурой газа и кинетической энергией совокупности молекул системы в молекулярно-кинетической теории газа.

Статистические закономерности действуют во всех неавтономных, сильно зависящих от внешней среды системах, с большим количеством элементов.

При статистических закономерностях данное состояние системы определяет все ее последующие состояния не однозначно, а лишь с определенной вероятностью.

В классической термодинамике в основном рассматриваются изолированные системы, которые не обмениваются с внешней средой энергией. Именно для таких систем установлен закон возрастания энтропии. Этот закон имеет простое статистическое толкование. Действительно, энтропия изолированной, т.е. предоставленной самой себе, системы не может убывать. С другой стороны, очевидно, что предоставленная самой себе система будет переходить из менее вероятного состояние в более вероятное. Таким образом, энтропия и вероятность состояний изолированной системы ведут себя аналогично: они могут либо возрастать, либо оставаться неизменными.

В последние годы широкое развитие получили исследования в области термодинамики неизолированных, так называемых открытых систем, т.е. систем, которые обмениваются энергией и веществом с внешним миром. Открытыми являются биологические системы, в частности клетка живых организмов. Для таких систем энтропия может как возрастать, так и убывать.

В изолированных системах естественные процессы идут в направлении от упорядоченных структур к неупорядоченным, т.е. от порядка к беспорядку, хаосу. И в этом смысле можно говорить о том, что энтропия есть мера хаоса.

Для неизолированных, открытых, систем эволюция, например, живых организмов ведет от менее совершенных форм к более совершенным, от меньшего порядка в природе к большему, и в этих системах энтропия может не увеличиваться, а уменьшаться.