Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

метод Верещагина

.docx
Скачиваний:
163
Добавлен:
01.03.2016
Размер:
524.71 Кб
Скачать

Лекция 13 (продолжение). Примеры решения на вычисление перемещений методом Мора-Верещагина и задачи для самостоятельного решения

 

Определение перемещений в балках

Пример 1.

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

Решение.

1) Составляем уравнение изгибающего момента от внешней силы MF.

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

4) Определяем перемещения

 

Пример 2.

Определить перемещение точки К балки по способу Верещагина.

Решение.

1) Строим грузовую эпюру.

2) Прикладываем в точке К единичную силу.

3) Строим единичную эпюру.

4) Определяем прогиб

;     ;    

 

Пример 3.

Определить углы поворота на опорах А и В для заданной балки (см. рис.).

Решение.

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

Находим параметры эпюр

    C1 = 2/3,     C2 = 1/3,

а  затем  и  углы  поворота  на опорах А и В  

 

Пример 4.

Определить угол поворота сечения  С для заданной балки (см. рис.).

Решение.

Определяем опорные реакции   RA=RB,

,     ,  RA = RB = qa.

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С, где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина.  Находим  параметры  эпюр         

        C2 = -C1 = -1/4,

а по ним и искомое перемещение

.

 

Пример 5.

Определить  прогиб  в  сечении С для заданной балки (см. рис.).

Решение.

1. Построение эпюр изгибающих моментов.

Эпюра MF  (рис. б)

Опорные реакции:

ВЕ:   ,   ,

,   RRE = F,   RE = 0;

АВ:  ,   RА = RВ = F;        ,    .

Вычисляем моменты в характерных точках  ,   MB = 0,   MC = Fa   и   строим   эпюру  изгибающего момента от заданной нагрузки.

Эпюра  (рис. в).

В сечении С, где ищется прогиб, прикладываем единичную силу  и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции  ВЕ - ,   ,    = 2/3;   ,  ,    = 1/3,   а затем моменты в характерных точках   ,   ,   .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр  и :

    ,    

          

Прогиб сечения С

.

 

Пример 6.

Определить   прогиб   в   сечении С для заданной балки (см. рис.).

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С. Пользуясь правилом Верещагина, вычисляем параметры эпюр    ,

     

и находим искомый прогиб

.

 

Пример 7.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

1. Построение эпюр изгибающих моментов.

Опорные реакции:

,   ,     RA = 2qa,

,  RRD = 3qa,     RD = qa.   

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ:   

Участок ВС:   

Участок СD:   

Искомое перемещение

.

 

Пример 8.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а).

Решение.

1. Построение эпюр изгибающих моментов.

Эпюра МF (рис. в). Определив опорные реакции

,   ,    RB = 19qa/8,    

,     RD = 13qa/8, строим эпюры поперечной силы Q и изгибающего момента   МF  от заданной нагрузки.

Эпюра   (рис. д). В сечении А, где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра  (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е, где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру МF на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

 

Номер

части

1

2

3

4

5

6

7

 

-qa3/6

2qa3/3

-qa3/2

qa3/4

qa3/4

-qa3

-qa3/2

Ci

-3a/4

-3a/4

-5a/6

-2a/3

-a/3

-a/6

0

qa4/8

-qa4/2

5qa4/12

-qa4/6

-qa4/12

qa4/6

0

-qa4/24

 

Получаем     .

Знак “минус” в результате означает, что точка А перемещается не вниз, как была направлена единичная сила, а вверх.

Угол поворота сечения Е находим двумя способами: по правилу Верещагина и по формуле Симпсона.

По правилу Верещагина, перемножая эпюры MF и , по аналогии с предыдущим получим

,

.

Для нахождения угла поворота по формуле Симпсона вычислим предварительно изгибающие моменты посредине участков:

Искомое перемещение, увеличенное в EIx раз,

.

 

Пример 9.

Определить, при каком значении коэффициента k прогиб сечения С будет равен нулю. При найденном значении k построить эпюру изгибающего момента и изобразить примерный вид упругой линии балки (см. рис.).

 

Решение.

Строим   эпюры  изгибающих моментов   от   заданной    нагрузки и от единичной силы, приложенной в сечении С, где ищется прогиб.

По условию задачи VC = 0. С другой стороны, . Интеграл на участке АВ вычисляем по формуле Симпсона, а на участке ВС – по правилу Верещагина.

Находим предварительно

Перемещение сечения С      ,

 

Отсюда     ,   .

При найденном значении k определяем значение опорной реакции в точке А:   ,   ,   , исходя из которого находим положение точки экстремума на эпюре М согласно условию   .

По значениям момента в характерных точках

,       ,   

строим эпюру изгибающего момента (рис. г).

 

Пример 10.

Определить вертикальное перемещение точки В консольной балки, изображенной на рисунке.

Решение.

Строим эпюру изгибающих моментов М от действия внешней сосредоточенной силы F:   МВ = 0, МА = –F2l (эпюра линейная).

По условию задачи требуется определить вертикальное перемещение уВ точки В консольной балки, поэтому строим единичную эпюру  от действия вертикальной единичной силы Fi  = 1, приложенной в точке В.

Учитывая, что консольная балка состоит из двух участков с разной жесткостью на изгиб, эпюры и М перемножаем с помощью правила Верещагина по участкам отдельно. Эпюры М ипервого участка перемножаем по формуле , а эпюры второго участка – как площадь эпюры М второго участка Fl2/2 на ординату 2l/3 эпюры  второго участка под центром тяжести треугольной эпюры М этого же участка.

В этом случае формула  дает:

 

Пример 11.

Определить вертикальное перемещение точки В однопролетной балки, изображенной на рисунке. Балка имеет постоянную по всей длине жесткость на изгиб EI.

Решение.

Строим эпюру изгибающих моментов М от действия внешней распределенной нагрузки: МА  = 0; MD  = 0;

.

Прикладываем в точке В единичную вертикальную силу F1 и строим эпюру (см. рис.):

откуда R= 2/3;

 откуда Rd = 1/3, поэтому Ma = 0; M = 0; .

Разделим рассматриваемую балку на 3 участка. Перемножение эпюр 1-го и 3-го участков не вызывает трудностей, так как перемножаем треугольные эпюры. Для того чтобы применить правило Верещагина ко 2-му участку, разобьем эпюру М 2-го участка на две составляющие эпюры: прямоугольную и параболическую с площадью (см. таблицу).



Центр тяжести параболической части эпюры М лежит посередине 2-го участка.

Таким образом, формула при использовании правила Верещагина дает:

 

Пример 12.

Определить максимальный прогиб в двухопорной балке, нагруженной равномерно распределенной нагрузкой интенсивности q (см. рис.).

Решение.

Находим изгибающие моменты:

- от заданной нагрузки

- от единичной силы, приложенной в точке С, где ищется прогиб .

Вычисляем искомый наибольший прогиб, который возникает в среднем сечении балки

 

Пример 13.

Определить прогиб в точке В балки, показанной на рисунке.

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и единичной силы, приложенной в точке В. Чтобы перемножить эти эпюры, надо балку разбить на три участка, так как единичная эпюра ограничена тремя различными прямыми.

Операция перемножения эпюр на втором и третьем участках осуществляется просто. Затруднения возникают при вычислении площади и координат центра тяжести основной эпюры на первом участке. В таких случаях намного упрощает решение задачи построение расслоенных эпюр. При этом удобно одно из сечений принять условно за неподвижное и строить эпюры от каждой из нагрузок, приближаясь справа и слева к этому сечению. Целесообразно за неподвижное принимать сечение в месте перелома на эпюре единичных нагрузок.

Расслоенная эпюра, в которой за неподвижное принято сечение В, представлена на рисунке. Вычислив площади составных частей расслоенной эпюры и соответствующие им ординаты единичной эпюры, получаем

.

 

Пример 14.

Определить перемещения в точках 1 и 2 балки (рис. а).

 

Решение.

Приведем эпюры М и Q для балки при а=2 м; q=10 кН/м; С=1,5аМ=0,5qa2Р=0,8qaМ0=М=200 МПа (рис. б и в).

Далее определяем перемещения в точках 1 и 2 балки (рис. а). Состояние балки под действием заданной нагрузки обозначим q.

Определим вертикальное перемещение  центра сечения, где приложен сосредоточенный момент. Для  этого рассмотрим балку в состоянии  под действием только сосредоточенной силы  приложенной в точке 1 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. г).

Вычислим опорные реакции, составив три уравнения равновесия

Проверка 

Реакции найдены верно.

Для построения эпюры  рассмотрим три участка (рис. г).

1 участок

2 участок

3 участок

По этим данным строим эпюру  (рис. д) со стороны растянутых волокон.

Определим  по формуле Мора с помощью правила Верещагина. При этом криволинейную эпюру , на участке между опорами, можно представить в виде сложения трех эпюр. Стрелка

Знак «минус» означает, что точка 1 перемещается вверх (в направлении противоположном ).

Определим вертикальное перемещение  точки 2, где приложена сосредоточенная сила. Для этого рассмотрим балку в состоянии  под действием только сосредоточенной силы  приложенной в точке 2 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. е).

Эпюра строится аналогично предыдущей.

Далее по формуле Мора

Точка 2 перемещается вверх.

Определим угол поворота  сечения, где приложен сосредоточенный момент.