Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia_rasteny_kratkie_otvety.doc
Скачиваний:
226
Добавлен:
29.02.2016
Размер:
5.82 Mб
Скачать
  1. Характеристика листа как органа фотосинтеза. Особенности строения листа как фотосинтетического аппарата разных растений.

Функции листа, как всякого другого органа, разнообразны. Известно, что лист является органом транспирации; однако, главной его функцией является фотосинтез. Выполнение листом этой функции связано с содержанием в хлоропластах фотосинтетических пигментов. Если рассматривать строение листа как органа, выполняющего процесс фотосинтеза, то следует отметить следующее.

Верхняя и нижняя эпидерма листовой пластинки, если не считать замыкающих клеток устьиц, состоит из клеток с большими вакуолями, в которых отсутствуют хлоропласты. Такие клетки хорошо пропускают свет в мезофилл и, таким образом, непосредственного участия в фотосинтезе не принимают. Эпидермальные клетки, покрытые кутикулой и воском, уменьшая транспирацию, помогают поддерживать водный гомеостаз листа. Последний процесс очень важный, так как скорость фотосинтеза зависит от количества воды в тканях. С другой стороны, через кутикулу проходит в 20–30 раз меньше СО2, чем через устьица. Создается противоречие между водным и газовым обменом. Это противоречие снимается действием устьиц, которые за счет открытия и закрытия регулируют скорость поступления СО2 и скорость транспирации. Таким образом, эпидерма задерживает воду и пропускает свет. Устьица – основные ворота для СО2. Кроме того, в некоторых растениях, например у яблони, СО2 может поступать через временные щели в кутикуле. Устьица пропускают по принципу обратной связи: СО2 используется на фотосинтез, его концентрация в межклетниках уменьшается, устьица открываются; СО2 поступает в лист, его концентрация в межклетниках увеличивается – устьица закрываются. Мезофилл у большинства растений состоит из палисадной и губчатой паренхимы. В клетках мезофилла имеются хлоропласты, здесь и проходит вся фотосинтетическая деятельность зеленого растения. Так как фотосинтез идет главным образом в палисадной паренхиме, ее называют ассимиляционной. Лист поглощает видимые лучи на 85 %, инфракрасные на 25 %, пропускает – первые на 5 %, вторые на 30 %. Особенно велика доля отраженных инфракрасных лучей – 45 %, тогда как видимых – только 10 %.

  1. Окислительное фосфорилирования, характеристика, типы.

На протяжении более чем 30 лет многочисленные исследования были направлены на выявление механизма, с помощью которого энергия, которая выделяется при переносе электронов, используется на синтез АТФ (фосфорилирование АДФ). Были предложены за этот период три гипотезы: химического и кон-формационного сопряжений и хемоосмотическая гипотеза. Наибольшее распространение получила последняя, которую предложил в 1961 г. Митчелл. В отличие от двух первых эта гипотеза постулирует, что свободная энергия, которая образуется ОВ реакциями цепи переноса электронов, используется не для генерации высокоэнергетического соединения или высокоэнергетической конформации молекулы, а идет на образование высокоэнергетического состояния в форме электрохимического градиента ионов Н+ на внутренней митохондриальной мембране. В соответствии с теорией Митчелла протоны проходят из митохондриального матрикса во внешнее митохондриальное пространство, тогда как электроны от НАДН идут на ЭТЦ, встроенную в митохондриальную мембрану. Каждая пара электронов пересекает мембрану три раза, когда передается с одного переносчика к другому и в конечном счете к О2. Перенос каждой пары ē по цепи от НАДН до О2 приводит к переходу через митохондриальную мембрану шести протонов. В результате возникает электрохимический потенциал Н+ на внутренней мембране. Запасенная таким образом энергия используется для синтеза АТФ при обратном транспорте протонов через АТФ-азный комплекс. Мембрана выполняет сопрягающую функцию: связывает два процесса – транспорт электронов и синтез АТФ. Каждое нарушение, вызывающее остановку транспорта электронов или увеличение проницаемости мембраны для протонов, приводит к нарушению синтеза АТФ и выделению освобождающейся в виде энергии тепла. Таким образом, физиологический смысл транспорта электронов заключается в образовании электрохимического потенциала, который приводит к синтезу АТФ.

Процесс фосфорилирования АДФ с образованием АТФ, сопряженный с транспортом электронов от дыхательного субстрата к кислороду воздуха, получил название окислительного фосфорилирования. Суммарное уравнение этого процесса можно записать так: НАДН + Н+ + 3АДФ + 3Ф + 1/2О2 →

НАД+ + 3АТФ + 4Н2О.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]