Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Концепции современного естествознания.pdf
Скачиваний:
105
Добавлен:
28.02.2016
Размер:
1.35 Mб
Скачать

Биогеоценоз – это целостная система. Выпадение одного или нескольких компонентов биогеоценоза может привести к разрушению целостности биогеоценоза в круговороте веществ, что часто ведет к необратимому нарушению равновесия и гибели биогеоценоза как системы.

Устойчивость биогеоценоза пропорциональна многообразию его компонентов. Чем многообразнее биогеоценоз, тем он, как правило, устойчивее во времени и пространстве. Так, например, биогеоценозы, представленные тропическими лесами, гораздо устойчивее биогеоценозов в зоне умеренного или арктического поясов, так как тропические биогеоценозы состоят из гораздо большего множества видов растений и животных, чем умеренные и тем более арктические биогеоценозы.

Высокоорганизованные организмы для своего существования нуждаются в более простых организмах; каждая экосистема неизменно содержит как простые, так и сложные компоненты.

Биогеоценоз – это открытая в вещественном и в энергетическом плане система. Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединены на планете в единую систему, область распространения жизни – биосферу Земли.

Биосферный уровень организации живого как уровень системной совокупности биоценозов является завершающим в иерархии. Биосферные процессы являются проявлением жизнедеятельности всего живого на Земле.

2.26.Учение о биосфере В.И. Вернадского

Вбуквальном смысле термин “биосфера” обозначает сферу жизни, и в таком смысле он впервые был введен в науку в 1875 г. австрийским геологом и палеонтологом Эдуардом Зюссом (18311914 гг.). Однако задолго до этого под другими названиями, в частности “пространство жизни”, “картина природы”, “живая оболочка Земли” и т.п., его содержание рассматривалось многими другими естествоиспытателями.

Первоначально под всеми этими терминами подразумевалась только совокупность живых организмов, обитающих на нашей планете, хотя иногда и указывалась их связь с географическими, геологическими и космическими процессами, но и при этом скорее обращалось внимание на зависимость живой природы от сил и веществ неживой природы.

Первым из биологов, который ясно указал на огромную роль живых организмов в образовании земной коры, был Ж.Б. Ламарк (1744-1829 гг.). Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря деятельности живых организмов.

Постепенно идея о тесной взаимосвязи между живой и неживой природой, об обратном воздействии живых организмов и их систем на окружающие их физические, химические и геологические факторы, все настойчивее проникала в сознание учёных и находила реализацию в их конкретных исследованиях. Этому способствовали и перемены, произошедшие в общем подходе естествоиспытателей к изучению природы. Поэтому на рубеже XIX-XX вв. в науку все шире проникают идеи целостного подхода к изучению природы, которые в наше время сформировались в системный метод изучения.

Выдающийся российский ученый Владимир Иванович Вернадский (1863-1945 гг.) исследовал, каким образом и в какой мере живое вещество влияет на физико-химические и геологические процессы, происходящие на поверхности Земли и в земной коре.

Биосферой называется вся совокупность живых организмов на Земле и все объемное пространство, заселенное ими, находящееся под их воздействием и занятое продуктами их деятельности.

Кроме растений и животных, Вернадский включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество. Это воздействие сказывается, прежде всего, в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого организма (вещества) в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

По мнению В.И. Вернадского, в прошлом явно недооценивался вклад живых организмов в энергетику биосферы и их влияние на неживые тела. Ведь в состав биосферы входит верхняя часть

57

литосферы (земной коры), гидросфера и нижняя часть атмосферы. Эти три оболочки связаны воедино и приобрели современный облик и состав благодаря грандиозной преобразующей работе живых организмов. Они многократно пропустили через себя весь объём мирового океана, создали почву, наполнили атмосферу Земли кислородом, оставили после себя километровые толщи осадочных пород и топливные богатства недр (костные тела). Не случайно поэтому В.И. Вернадский считает, что живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, её определяющей.

Занимаясь вопросами биогеохимии, изучающей распределение химических элементов по поверхности планеты, Вернадский пришел к выводу, что нет практически ни одного элемента из таблицы Менделеева, который не содержался бы в живом веществе. Он сформулировал три биогеохимических принципа.

1.Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению. Этот принцип в наши дни нарушен человеком.

2.Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в

биосфере форм жизни, идет в направлении, усиливающим биогенную миграцию атомов. Этот принцип при антропогенном изменении средних размеров особей Земли (лес сменяется лугом, крупные животные мелкими) начинает действовать аномально интенсивно.

3. Живое вещество находится в непрерывном химическом обмене с окружающей средой, создающейся и поддерживающейся на Земле космической энергией Солнца. Вследствие нарушения двух первых принципов космические взаимодействия из поддерживающих биосферу могут превратиться в разрушающие ее факторы.

Данные геохимические принципы соотносятся со следующими важными выводами Вернадского: каждый организм может существовать только при условии постоянной тесной связи с другими организмами и неживой природой; жизнь со всеми ее проявлениями произвела глубокие изменения на нашей планете.

Совершенствуясь в процессе эволюции, живые организмы все шире распространялись по планете, стимулируя перераспределение энергии и вещества.

Глубоко изучив биосферу, В.И. Вернадский обобщил эмпирический материал в виде основополагающих выводов.

1. Принцип целостности биосферы. “Можно говорить о всей жизни, о всем живом веществе как о едином целом в механизме биосферы”. Строение Земли, по Вернадскому, есть согласованный механизм. “Твари Земли являются созданием стройного космического процесса, необходимой и закономерной частью сложного космического механизма”.

Узкие пределы существования жизни – физические постоянные, уровни радиации и т.п. – подтверждают это. Как будто кто-то создал такую среду, чтобы жизнь была возможна. Какие условия и константы имеются в виду? Гравитационная постоянная, или константа всемирного тяготения определяет размеры звезд, температуру и давление в них, влияющие на ход реакции. Если она будет чуть меньше, звезды станут недостаточно горячими для протекания в них термоядерного синтеза; если чуть больше, звезды превзойдут “критическую” массу и обратятся в черные дыры. Постоянная электромагнитного взаимодействия определяет конфигурацию электронных оболочек и прочность химических связей; ее изменение делает Вселенную мертвой. Экология также показала, что живой мир – единая система, сцементированная множеством цепочек питания и иных взаимозависимостей. Если даже небольшая часть ее погибнет, разрушится и все остальное.

2.Принцип гармонии биосферы и ее организованности. В биосфере “все учитывается и все приспосабливается с той же точностью, с той же механичностью и с тем же подчинением мере и гармонии, какую мы видим в сложных движениях небесных светил и начинаем видеть в системах атомов вещества”.

3.Роль живого в эволюции Земли. “На земной поверхности нет химической силы, более постоянно действующей, а поэтому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом... Все минералы верхней части земной коры – свободные алюмокремниевые кислоты (глины), карбонаты (известняки и доломиты), гидраты окиси железа и алюминия и многие сотни других – непрерывно создаются в ней под влиянием жизни”.

58

4.Космическая роль биосферы в трансформации энергии. Вернадский подчеркивал важное значение энергии и называл живые организмы механизмами превращения энергии. “Можно рассматривать всю эту часть живой природы как дальнейшее развитие одного и того же процесса превращения солнечной световой энергии в действенную энергию Земли”.

5.Космическая энергия вызывает давление жизни, которое достигается размножением. Размножение организмов уменьшается по мере увеличения их количества. Размеры популяций возрастают до тех пор, пока среда может выдержать их дальнейшее увеличение, после чего достигается равновесие. Численность колеблется вблизи равновесного уровня.

6.Растекание жизни есть проявление ее геохимической энергии. Живое вещество, подобно газу, растекается по земной поверхности в соответствии с правилом инерции. Мелкие организмы размножаются гораздо быстрее, чем крупные. Скорость передачи жизни зависит от плотности живого вещества.

7.Жизнь целиком определяется полем устойчивости зеленой растительности, а пределы жизни – физико-химическими свойствами соединений, строящих организм, их неразрушимостью

вопределенных условиях среды. Максимальное поле жизни определяется крайними пределами выживания организмов. Верхний предел жизни обуславливается лучистой энергией, присутствие

которой исключает жизнь и от которой предохраняет азоновый щит. Нижний предел связан с достижением высокой температуры. Интервал в 433оС (от минус 252оС до плюс 180оС) является предельным тепловым полем.

8.Биосфера в основных своих чертах представляет один и тот же химический аппарат с самых древних геологических периодов. Жизнь оставалась в течение геологического времени постоянной, менялась только ее форма. Само живое вещество не является случайным созданием.

9.Повсеместность жизни в биосфере. Жизнь постоянно, медленно приспосабливаясь, захватила биосферу, и захват этот не закончился. Поле устойчивости жизни есть результат приспособленности в ходе времени.

10.Формы нахождения химических элементов: а) горные породы и минералы; б) магмы; в) рассеянные элементы; г) живое вещество.

Закон бережливости в использовании живым веществом простых химических тел: раз вошедший элемент проходит длинный ряд состояний, и организм вводит в себя только необходимое количество элементов.

11.Постоянство количества живого вещества в биосфере. Количество свободного кислорода

ватмосфере – того же порядка, что и количество живого вещества (1,5×1015 т и 1014-1015 т). Это обобщение справедливо в рамках значительных геологических отрезков времени, и оно используется для того, чтобы показать, что живое вещество является посредником между Солнцем и Землей, и стало быть: либо его количество должно быть постоянным, либо должны меняться его энергетические характеристики.

Исходной основой существования биосферы и происходящих в ней биогеохимических процессов является астрономическое положение нашей планеты и в первую очередь её расстояние от Солнца и наклон земной оси к плоскости земной орбиты (эклиптики). Это пространственное расположение Земли определяет в основном климат на планете, а последний в свою очередь – жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии биосферы и регулятором всех геологических, химических и биологических процессов на нашей планете.

Центральной, проходящей через все творчество Вернадского, является идея единства биосферы и человечества. Вернадский в своих работах по естествознанию раскрывает корни этого единства, значение организованности биосферы в развитии человечества.

Превращение разума и труда человечества в геологическую силу планетного масштаба происходило в рамках биосферы, составной частью которой они являются. В.И. Вернадский в своих исследованиях неизменно подчёркивал, какое огромное воздействие человечество оказывает на расширение жизни путём создания новых культурных видов растений и животных. В.И. Вернадский рассматривает возникновение сознания как закономерный результат эволюции биосферы, но, однажды возникнув, оно затем начинает оказывать всё возрастающее влияние на биосферу благодаря трудовой деятельности человека.

59

Ноосфера есть новое геологическое явление на нашей планете. В ней впервые человек становится крупнейшей геологической силой. Он может и должен перестраивать своим трудом и мыслью область своей жизни, перестраивать коренным образом.

Хорошо сознавая, что труд представляет собой целесообразную деятельность, Вернадский указывал, что ноосфера, или сфера разума, будет все больше и больше определять не только прогресс общества, но и эволюцию биосферы в целом, а через нее и процессы, совершающиеся на Земле. Недаром он рассматривает мысль как планетарное явление.

Эволюционный процесс получает особое геологическое значение благодаря тому, что он создал новую геологическую силу – научную мысль социального человечества. Под влиянием научной мысли и человеческого труда биосфера переходит в новое состояние – в ноосферу.

Каким же образом человеческая деятельность влияет на процессы в биосфере, как она способствует ее эволюции?

Прежде всего, следует отметить, что биологическая эволюция присуща лишь живому организму (веществу) биосферы, т.е. различным видам растений и животных и, разумеется, человеку в той мере, в какой он развивался до возникновения цивилизации и превращения в человека разумного. В дальнейшем эволюция биологического развития человека переходит в эволюцию социальную.

Эволюция живого вещества биосферы приводит к возникновению новых видов растений и животных, связанных с окружающей средой посредством питания и дыхания, обменом веществ. Такой обмен приводит к миграции, движению атомов от живого вещества к неживому, в особенности к биогенному, в котором живые элементы объединены с неживыми. А все это во многом меняет характер взаимодействия живого вещества биосферы не только с ее неживой частью, но и с остальными сферами оболочки Земли.

В период перехода от биосферы к ноосфере на сцену выступает такой мощный геохимический фактор, как постоянно увеличивающееся количество зелёного живого вещества в биосфере, получаемого посредством расширения посевных площадей и интенсификации земледелия. В результате искусственного отбора новых сортов растений и пород животных значительно ускоряются процессы эволюции, быстрее возникают новые виды. А это в свою очередь в еще большей степени способствует ускорению процессов обмена между живым и костным веществом в биосфере.

По-видимому, постепенный переход к ноосфере начался ещё сотни тысяч лет назад, когда человек овладел огнем и стал изготовлять первые, несовершенные еще орудия производства и охоты. Благодаря этому он получил огромное преимущество перед животными, но с геологической точки зрения гораздо более важным был длительный процесс приручения диких стадных животных и создание новых сортов культурных растений. Как известно, именно этот процесс положил начало скотоводству и земледелию, которые исторически привели к первому наиболее значительному разделению общественного труда и систематическому обмену его продуктами между различными племенами. В.И. Вернадский указывает: «Человек этим путём стал менять окружающий его мир и создавать для себя новую, не бывшую никогда на Планете живую природу».

Что же касается борьбы с животными, то человек одержал в ней победу с изобретением огнестрельного оружия, и поэтому теперь он должен предпринимать особые меры, чтобы не допустить истребления всех диких животных. Еще большие усилия необходимы для сохранения самой биосферы в связи с многократно возросшими техногенными нагрузками на нее. В связи с этим возникает общая для всего человечества глобальная проблема сохранения окружающей среды и, прежде всего, живой природы.

2.27. Основные проблемы генетики и механизм воспроизводства жизни

Генетика – наука о наследственности, способах передачи признаков от родителей к детям, о механизмах индивидуальной изменчивости организмов и способах управления ею.

Генетика прошла в своем развитии 7 этапов.

1. Грегор Мендель (1822-1884) в 1865 году открыл законы наследственности. Скрещивая гладкий и морщинистый сорта гороха, он получил в первом поколении только гладкие семена, а во втором поколении – ¼ морщинистых семян. И он догадался: в зародышевую клетку поступает два наследственных задатка – от каждого из родителей. Если они не одинаковые, то у гибрида проявля-

60

ется один, доминантный (преобладающий) признак, в данном случае – гладкость. Рецессивный (уступающий) остается как бы в скрытом состоянии. В следующем поколении признаки распределяются в соотношении 3:1.

2.Август Вейсман (1834-1914) показал, что половые клетки обособлены от остального организма и поэтому не подвержены влияниям, действующим на соматические ткани.

3.Гуго де Фриз (1848-1935) открыл существование наследуемых мутаций, составляющих основу дискретной изменчивости. Он предположил, что основные виды возникли вследствие мутаций. Мутация – это частичное изменение структуры гена. Конечный ее эффект – изменение свойств белков, кодируемых мутантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываются радиацией, химическими соединениями, изменением температуры, наконец, могут быть просто случайными.

4.Томас Морган (1866-1945) создал хромосомную теорию наследственности, в соответствии с которой каждому биологическому виду присуще свое строго определенное число хромосом.

5.Г. Меллер в 1927 году установил, что генотип может изменяться под действием рентгеновских лучей. Отсюда берут свое начало индуцированные мутации и то, что впоследствии было названо генетической инженерией с ее грандиозными возможностями и опасностями вмешательства в генетический механизм.

6.Дж. Бидл и Э. Татум в 1941 году выявили генетическую основу процессов биосинтеза.

7.Джеймс Уотсон и Френсис Крик предложили модель молекулярной структуры ДНК и механизма ее репликации. То, что ДНК – носитель наследственной информации, выяснилось в середине 40-х годов XX в., когда после перенесения ДНК одного штамма бактерий в другой в нем стали появляться бактерии штамма, чья ДНКбыла взята.

В середине XX века произошла научная революция в биологии. Были выяснены вещественный состав, структура клетки и процессы, происходящие в ней. Основное вещество клетки – белки, молекулы которых обычно содержат несколько сот аминокислот и похожи на бусы, состоящие из главной и боковой цепей. У всех живых видов имеются свои особые белки, определяемые генетическим аппаратом. Собственно, клетка и нужна для аппарата воспроизводства, который находится в ее ядре. Без клетки генетический аппарат не мог бы существовать.

Попадающие в организм белки расщепляются на аминокислоты, которые затем используются им для построения собственных белков. Нуклеиновые кислоты создают ферменты, управляющие реакциями. Каждый фермент управляет одной реакцией и действует только на строго определенный вид молекул. Все ферменты – белки.

Три самых важных составляющих процесса развития организма:

1) оплодотворение (слияние половых клеток) при половом размножении; 2) воспроизводство в клетке по данной матрице определенных веществ и структур;

3) деление клеток, в результате которого организм растет из одной оплодотворенной яйцеклетки.

Существует два способа деления клеток. Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра с наборами хромосом (части ядер клеток), идентичными наборам родительской клетки. Мейоз – это деление клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Первый способ характерен для всех клеток, кроме половых, второй – для половых клеток. При всех формах клеточного деления ДНК каждой хромосомы реплицируется.

Воспроизводство себе подобных и наследование признаков осуществляется с помощью наследственной информации, материальным носителем которой являются молекулы дезоксирибонуклеиновой кислоты. ДНК состоит из двух цепей, идущих в противоположных направлениях и закрученных одна вокруг другой.

В клетке человека ДНК распределена на 23 пары хромосом и содержит около 1 млрд. пар оснований, длина ее – около 1 м. Если составить цепочку из ДНК всех клеток одного человека, то она сможет протянуться через всю Солнечную систему.

Носители информации – нуклеиновые кислоты – содержат азот и выполняют три функции:

1)самовоспроизведение; 2) хранение; 3) реализация этой информации в процессе роста новых клеток. Мономеры нуклеиновых кислот несут информацию, по которой строятся аминокислоты (каждой аминокислоте, входящей в белок, соответствует определенный набор из трех мономеров нук-

61

леиновых кислот – так называемый триплет). Генетическая информация, содержащаяся в нуклеиновых кислотах, проявляется в образовании ферментов, которые делают возможным строение живого тела.

Реализация многообразной информации о свойствах организма осуществляется путем синтеза различных белков согласно генетическому коду. Сходство и различие тел определяется набором белков. Чем ближе организмы друг к другу, тем более сходны их белки.

Молекулы ДНК – это как бы набор, с которого «печатается» организм. Участок молекулы ДНК, служащий матрицей для синтеза одного белка, называют геном. Гены расположены в хромосомах.

Процесс воспроизводства состоит из трех частей: репликация, транскрипция, трансляция. Репликация – это удвоение молекулы ДНК, необходимое для последующего деления клеток.

При этом ДНК разделяется на две цепи, а затем из нуклеотидов, свободно плавающих в клетке, формируется вдоль каждой цепи еще одна цепь.

Транскрипция представляет собой перенос кода ДНК путем образования одноцепочечной молекулы информационной РНК на одной нити ДНК (информационная РНК – копия части молекулы ДНК, одного или группы рядом лежащих генов, несущих информацию о структуре белков, необходимых для выполнения одной функции).

Трансляция – это синтез белка на основе генетического кода информационной РНК в особых частях клетки – рибосомах, куда доставляет аминокислоты транспортная РНК.

Основной механизм, с помощью которого молекулярная биология объясняет передачу и переработку генетической информации, по существу, является петлей обратной связи. ДНК, содержащая в линейно-упорядоченном виде всю информацию, необходимую для синтеза различных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе которых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтезированных протеинов, активируя и регулируя различные стадии превращений и процесс репликации ДНК, позволяющий копировать информацию с той же скоростью, с которой размножаются клетки.

Генная инженерия

В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. Методом генетической инженерии удалось получить интерферон и инсулин. Объектом биотехнологии выступает не только отдельный ген, но и клетка в целом.

Клеточная инженерия открывает широкие возможности практического использования биомассы культивируемых клеток и создания на их основе промышленных технологий, например, для быстрого клонального микроразмножения и оздоровления растений. Применение методов клеточной инженерии позволяет существенно интенсифицировать процесс создания новых форм организмов. Метод гибридизации соматических клеток – новый метод, дающий возможность получать межвидовые гибриды, то есть преодолевать естественный барьер межвидовой нескрещиваемости, чего нельзя было достичь традиционными методами селекции. Таким образом получают совершенно новые организмы, не существовавшие в природе. Но при этом возникает опасность, что искусственно созданные организмы могут вызвать непредсказуемые последствия для всего живого на Земле, в том числе и для человека.

Генная и клеточная инженерия обратили внимание человечества на необходимость общественного контроля над всем, что происходит в науке.

Генетика человека – отрасль науки, изучающая законы наследственности и изменчивости человека как индивида, популяции, вида. Здесь применяются специальные методы исследования: 1) изучение культур тканей; 2) статистический сбор материалов о распространении отдельных признаков в различных популяциях; 3) изучение генеалогий отдельных семей; 4) изучение однояйцевых близнецов.

62

В настоящее время налажено промышленное выращивание длительных культур тканей человека и получение с их помощью вакцин и сывороток для предотвращения и лечения многих тяжелых болезней.

У человека изучен характер наследования свыше 2 тысяч отдельных генов, но это только очень небольшая доля общего количества имеющихся у него генов. После установления наследственной природы изучаемого признака приступают к генетическому и статистическому анализу родословной. Это позволяет установить, к какому из трех известных типов наследования – ауто- сомно-доминантному, аутосомно-рецессивному или сцепленному с полом – подчиняется передача исследуемого признака.

Для аутосомно-доминантного типа наследования характерна прямая передача признака от одного родителя ребенку, причем оба пола наследуют этот признак с равной вероятностью. Так наследуется свыше 900 болезней и пороков развития, включая глухоту, короткопалость, врожденные пороки сердца и др. Вероятность наследования дефектного гена – 50%.

При аутосомно-рецессивном типе наследования исследуемый признак может проявляться не в каждом поколении. У здоровых родителей могут родиться дети, больные наследственным заболеванием. Если оба родителя являются носителями дефектного гена, в среднем один ребенок из четырех может унаследовать два дефектных гена (значит, и болезнь), а двое из четырех могут быть носителями дефектного гена без проявления болезни. Таким образом, аутосомно-рецессивно наследуются около 800 заболеваний, например, различные анемии, многие нарушения обмена веществ.

Наследование признаков, сцепленных с полом, полностью подчиняется закономерностям распределения у потомков половых хромосом. Так наследуются, например, гемофилия (несвертываемость крови), цветовая слепота, некоторые формы задержки психического развития и др. Составление и анализ родословной является единственным методом определения риска наследственного заболевания.

Генетика человека претерпевает процесс дифференциации на более частные и прикладные науки. Среди них медицинская генетика и медико-генетические консультации. Медицинская генетика позволяет своевременно распознать и лечить не только наследственные болезни, но и многие инфекционные, травматические и профессиональные заболевания, так как симптомы и прогноз лечения их во многом зависят от генотипа больных. Медико-генетические консультации помогают уменьшить опасность рождения детей с наследственными болезнями, предостерегают от заключения браков между близкими родственниками и между носителями наследственных болезней.

Сгенетической инженерией связывают возможности лечения наследственных болезней, болезней иммунитета, устранения тканевой несовместимости, препятствующей успешной пересадке органов и тканей. Разработаны способы выделения из молекулы ДНК нужных фрагментов и создания из них гибридов с заданными свойствами для последующего введения их в любые клетки.

Важна разработка средств для противодействия мутагенам. Радиация и многие химические соединения являются мощными мутагенами, которые индуцируют мутации в соматических и половых клетках человека. При этом соматические мутации увеличивают количество злокачественных опухолей, сердечно-сосудистых заболеваний, сокращают жизнь, искажают другие признаки людей одного поколения, а мутации в половых клетках проявляются в виде наследственных заболеваний последующих поколений.

Мутагены поступают в организм человека с пищей, с лекарственными препаратами, вакцинами и т.д. Для ослабления действия мутагенов проводятся исследования по созданию антимутагенов – соединений, нейтрализующих или сам мутаген еще до его реакций с молекулой ДНК, или последствия этой реакции. В роли антимутагенов могут выступать некоторые витамины.

Сувеличением масштабов экспериментирования на человеке возрастает опасность манипулирования его генотипом. Эксперименты с молекулами ДНК, с вмешательством в генетическую основу человека требуют большой осторожности, так как искусственно перестроенные молекулы могут выйти из-под контроля экспериментаторов и вызвать непредвиденные последствия, опасные для человечества в целом. Поэтому такие исследования должны контролироваться обществом. Резко возрастает и собственная ответственность ученых, которым следует считаться с тем, что свобода научного поиска предполагает социальную ответственность исследователей.

63