Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теорія подільності на множині цілих чисел.doc
Скачиваний:
35
Добавлен:
14.02.2016
Размер:
591.36 Кб
Скачать

3. Задачі:

1.  Доведіть властивість НСД: якщо кожне з чисел а і b помножити на одне й те ж число к 0, то їх найбільший спільний дільник помножиться на к.

2.  За допомогою алгоритму Евкліда знайдіть НСД чисел:

1)42628 і 33124; 2) 71004 і 154452; 3) 469459 і 519203;

4)179370199 і 4345121; 5) 299, 391, 667; 6) 1955, 2431, 3111, 4862.

3. Найменше спільне кратне.

Означення: Нехай а і b цілі числа, відмінні від 0. Ціле число к називається спільним кратним цих чисел, якщо воно ділиться на а і на b.

Ціле число К називається найменшим спільним кратним чисел а і b, якщо:

1)       К—спільне кратне а і b;

2)        будь-яке спільне кратне цих чисел ділиться на К.

Позначається К = [а, b] або НСК (а, b).

Теорема: Число ,де (a,b) – найбільший спільний дільник двох натуральних чисел a і b, є найменшим спільним кратним цих чисел.

Доведення: Нехай (а,b) = d, тоді а = п∙d, b = 1∙d, де (п,l) = 1. (Поясніть, чому числа п та l — взаємнопрості). Отже

Ця рівність показує, що ділиться на b і на a, тобто є спільним кратним a і b. Покажемо тепер, що будь-яке кратне K>0 чисел a і b ділиться на .Оскільки то K=as=nds. Крім того і b=ld, тому , а отже .Оскільки (n,l) = 1, то , отже існує таке число k, що s=lk .

Тоді K=nds=ndlk і оскільки , то K ділиться на . Отже, - найменше спільне кратне чисел a і b.

Приклад 1. Знайти [364, 143]. Спочатку знаходимо (364, 143) за алгоритмом Евкліда:

(364, 143)= 13

[364, 143] = (364, 143)/13 = 28∙143 = 4004

Для спрощення знаходження НСК варто знати такі його властивості:

Якщо кожне з чисел а і b помножити або поділити на одне й те ж число m0, то їх НСК також помножиться або поділиться на це число m:

1) [am, bm] =

2)

Приклад 2. Знайдемо [5640, 2500]. Поділимо кожне число на 10 і знайдемо за допомогою алгоритму Евкліда.

(564, 250) = 2, тоді [564, 250] = (564∙250) / 2 = 564∙125 = 70500. Тоді [5640, 2500] = 70500∙10 = 705000.

Приклад 3. Знайдемо [35, 77, 1141].

Отже, [35,77,1141] = 62755.

Задачі:

1.  Довести властивості 1), 2) НСК двох чисел.

2.  Довести, що НСК двох взаємно простих чисел дорівнює їх добутку.

3.  Знайти НСК чисел:

1) 120, 96; 2) 71004, 154452; 3) 232, 460, 280; 4) 67283, 122433, 221703.

4. Прості і складені числа.

1. Прості числа і їх властивості.

Означення: Натуральне число називається простим, якщо воно більше за 1 і не має інших дільників, крім 1 і р.

Натуральне число називається складеним, якщо воно більше за 1 і має, принаймні, один дільник, відмінний від 1 та р.

Число 1 не належить ні до простих, ні до складених чисел. Першими простими числами в натуральному ряді є 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 ...

Таким чином, множина всіх натуральних чисел розбивається на три підмножини:

1) прості числа, 2) складені числа, 3) число 1.

Основним фактом теорії простих чисел є твердження про те, що будь-яке складене число розкладається і при тому єдиним способом (з точністю до порядку запису) в добуток простих чисел. Перед тим, як довести цю теорему, яка отримала назву "основної теореми арифметики", розглянемо спочатку деякі властивості простих чисел.

1.  Якщо просте число ділиться на деяке натуральне п≠ 1, то р = п. (Доведення — методом від супротивного).

2.  Якщо і — різні прості числа, то не ділиться на (Використати означення).

3.  Будь-яке натуральне число п > 1 ділиться хоча б на одне просте число. (Доведення методом математичної індукції).

4.  Якщо п — натуральне число, а р — просте, то або п ділиться на р, або пір — взаємно прості. (Використати найбільший спільний дільник (р, n) ).

5.  Якщо добуток двох або більше натуральних чисел ділиться на просте число р, то хоча б один з множників ділиться на р. (Доведення методом математичної індукції).

6.  Теорема: Якщо натуральне число п складене, а р його

найменший простий дільник, то р ≤ .

Доведення: Оскільки п — складене число, а р — його найменший простий дільник, то п=р∙, причому р≤. Помножимо обидві частини нерівності на рівні числа р∙ і п. Отримаємо р2<п, звідки р2 ≤ п, або р ≤.

Наслідок: Якщо число п не ділиться на жодне просте число, яке не перевищує , то n — просте, в протилежному випадку — воно складене.

Приклад: Нехай п=137. 11 << 12. Розглянемо прості числа 2, 3, 5, 7, 11. Число 137 не ділиться на жодне з них, отже воно є простим.