Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архитектура ЭВМ.docx
Скачиваний:
28
Добавлен:
12.06.2015
Размер:
162.96 Кб
Скачать

2.8 Типы и форматы команд

Несмотря на различие в системах команд разных ЭВМ, некоторые основные типы операций могут быть найдены в любой из них. Для описания этих типов примем следующую классификацию:

команды пересылки данных;

команды арифметической и логической обработки;

команды работы со строками;

команды SIMD;

команды преобразования;

команды ввода/вывода;

команды управления потоком команд.

^ 2.8.1 Команды пересылки данных

Это наиболее распространенный тип машинных команд. В таких командах должна содержаться следующая информация:

адреса источника и получателя операндов – адреса ячеек памяти, номера регистров процессора или информация о том, что операнды расположены в стеке;

длина подлежащих пересылке данных (обычно в байтах или словах), заданная явно или косвенно;

способ адресации каждого из операндов, с помощью которого содержимое адресной части команды может быть пересчитано в физический адрес операнда.

Рассматриваемая группа команд обеспечивает передачу информации между процессором и ОП, внутри процессора и между ячейками памяти. Пересылочные операции внутри процессора имеют тип «регистр-регистр». Передачи между процессором и памятью относятся к типу «регистр-память», а пересылки в памяти — к типу «память-память».

^ 2.8.2 Команды арифметической и логической обработки

В данную группу входят команды, обеспечивающие арифметическую и логическую обработку информации в различных формах ее представления. Для каждой формы представления чисел в АСК обычно предусматривается некий стандартный набор операций.

Помимо вычисления результата выполнение арифметических и логических операций сопровождается формированием в АЛУ признаков (флагов), характеризующих этот результат. Наиболее часто фиксируются такие признаки, как:

Z (Zero) — нулевой результат;

N (Negative) — отрицательный результат;

V (oVerflow) — переполнение разрядной сетки;

С (Carry) — наличие переноса.

К стандартному набору операций над целыми числами, представленными в форме с фиксированной запятой, следует отнести:

двухместные арифметические операции (операции с двумя операндами): сложение, вычитание, умножение и деление;

одноместные арифметические операции (операции с одним операндом): вычисление абсолютного значения (модуля) операнда, изменение знака операнда;

операции сравнения, обеспечивающие сравнение двух целых чисел и выработку признаков, характеризующих соотношение между сопоставляемыми величинами (=, <>, >, <, <=, >=).

Часто этот перечень дополняют такими операциями, как вычисление остатка от целочисленного деления, сложение с учетом переноса, вычитание с учетом заема, увеличение значения операнда на единицу (инкремент), уменьшение значения операнда на единицу (декремент).

Отметим, что выполнение арифметических команд может дополнительно сопровождаться перемещением данных из устройства ввода в АЛУ или из АЛУ на устройство вывода.

Для работы с числами, представленными в форме с плавающей запятой, в АСК большинства машин предусмотрены:

основные арифметические операции;

операции сравнения, обеспечивающие сравнение двух вещественных чисел с выработкой признаков;

операции преобразования: формы представления (между фиксированной и плавающей запятой), формата представления (с одинарной и двойной точностью).

Стандартная система команд ЭВМ содержит команды для выполнения различных логических операций над отдельными битами слов или других адресуемых единиц. Такие команды предназначены для обработки символьных и логических данных. Минимальный набор поддерживаемых логических операций — это «НЕ», «И», «ИЛИ» и сложение по модулю 2.

В дополнение к побитовым логическим операциям, практически во всех АСК предусмотрены команды для реализации операций логического, арифметического и циклического сдвигов.

При логическом сдвиге влево или вправо сдвигаются все разряды слова. Биты, вышедшие за пределы разрядной сетки, теряются, а освободившиеся позиции заполняются нулями.

При арифметическом сдвиге данные трактуются как целые числа со знаком, причем бит знака не изменяет положения. При сдвиге вправо освободившиеся позиции заполняются значением знакового разряда, а при сдвиге влево — нулями. Арифметические сдвиги позволяют ускорить выполнение некоторых арифметических операций. Так, если числа представлены двоичным дополнительным кодом, то сдвиги влево и вправо эквивалентны соответственно умножению и делению на 2.

При циклическом сдвиге смещаются все разряды слова, причем значение разряда, выходящего за пределы слова, заносится в позицию, освободившуюся с противоположной стороны, то есть потери информации не происходит. Одно из возможных применений циклических сдвигов – это перемещение интересующего бита в крайнюю левую (знаковую) позицию, где он может быть проанализирован как знак числа.

Для работы со строками в АСК обычно предусматриваются команды, обеспечивающие перемещение, сравнение и поиск строк. В большинстве машин перечисленные операции просто имитируются за счет других команд.

^ Команды преобразования осуществляют изменение формата представления данных. Примером может служить преобразование из десятичной системы счисления в двоичную или перевод 8-разрядного кода символа из кодировки ASCII в кодировку EBCDIC, и наоборот.

2.8.3 SIMD-команды

Название данного типа команд представляет собой аббревиатуру от Single Instruction Multiple Data — буквально «одна инструкция — много данных». В отличие от обычных команд, оперирующих двумя числами, SIMD-команды обрабатывают сразу две группы чисел (в принципе их можно называть групповыми командами). Операнды таких команд обычно представлены в одном из упакованных форматов.

Идея SIMD-обработки была выдвинута в Институте точной механики и вычислительной техники им. С.А. Лебедева в 1978 году в рамках проекта «Эльбрус-1». С 1992 года команды типа SIMD становятся неотъемлемым элементом АСК микропроцессоров фирм Intel и AMD, Поводом послужило широкое распространение мультимедийных приложений. Видео, трехмерная графика и звук в ЭВМ представляются большими массивами данных, элементы которых чаше всего обрабатываются идентично. Так, при сжатии видео и преобразовании его в формат MPEG один и тот же алгоритм применяется к тысячам битов данных. В трехмерной графике часто встречаются операции, которые можно выполнить за один такт: интерполирование и нормировка векторов, вычисление скалярного произведения векторов, интерполяция компонентов цвета и т. д. Включение SIMD-команд в АСК позволяет существенно ускорить подобные вычисления.

Первой на мультимедийный бум отреагировала фирма Intel, добавив в систему команд своего микропроцессора Pentium ММХ 57 SIMD-команд. Название МMX (MultiMedia eXtention – мультимедийное расширение) разработчики обосновывали тем, что при выборе состава новых команд были проанализированы алгоритмы, применяемые в различных мультимедийных приложениях. Команды ММХ обеспечивали параллельную обработку упакованных целых чисел. При выполнении арифметических операций каждое из чисел, входящих в группу, рассматривается как самостоятельное, без связи с соседними числами. Учитывая специфику обрабатываемой информации, команды ММХ реализуют так называемую арифметику с насыщением: если в результате сложения образуется число, выходящее за пределы отведенных под него позиций, оно заменяется наибольшим двоичным числом, которое в эти позиции вмещается.

Следующим шагом стало создание новых наборов SIMD-команд, работающих также с операндами, представленными в виде упакованных чисел с плавающей запятой. Такие команды в соответствующих приложениях повышают производительность процессора примерно вдвое. Первой подобную технологию в середине 1998 года предложила фирма AMD. Это мультимедийное расширение включало в себя 21 SIMD-команду и получило название 3DNow!. Расширение 3DNow! в дополнение к SIMD-обработке целочисленной информации типа ММХ позволяло оперировать парой упакованных чисел в формате с плавающей запятой.

Полугодом позже фирма Intel ввела в свои микропроцессоры так называемые потоковые SIMD-команды, обозначив их аббревиатурой SSE — Streaming SIMD Extension (потоковая обработка по принципу «одна команда — много данных»). Сначала это были 70 команд в микропроцессоре Pentium III. Команды дополняли групповые целочисленные операции МMX и расширяли их за счет групповых операций с 32-разрядными вещественными числами.

^ 2.8.4 Команды ввода/вывода

Команды этой группы могут быть подразделены на команды управления периферийным устройством (ПУ), проверки его состояния, ввода и вывода.

Команды управления периферийным устройством служат для запуска ПУ и указания ему требуемого действия. Трактовка подобных инструкций зависит от типа ПУ.

Команды проверки состояния ввода/вывода применяются для тестирования различных признаков, характеризующих состояние модуля ввода/вывода и подключенных к нему ПУ. Благодаря этим командам центральный процессор может выяснить, включено ли питание ПУ, завершена ли предыдущая операция ввода/вывода, возникли ли в процессе ввода/вывода какие-либо ошибки и т. п.

Собственно обмен информацией с ПУ обеспечивают команды ввода и вывода. Команды ввода предписывают модулю ввода/вывода получить элемент данных (байт или слово) от ПУ и поместить его на шину данных, а команды вывода — заставляют модуль ввода/вывода принять элемент данных с шины данных и переслать его на ПУ.

^ 2.8.5 Команды управления системой

Команды, входящие в эту группу, являются привилегированными и могут выполняться, только когда центральный процессор ЭВМ находится в привилегированном состоянии или выполняет программу, находящуюся в привилегированной области памяти (обычно привилегированный режим используется лишь операционной системой). Так, лишь эти команды способны считывать и изменять состояние ряда регистров устройства управления.

^ 2.8.6 Команды управления потоком команд

Концепция фон-неймановской вычислительной машины предполагает, что команды программы, как правило, выполняются в порядке их расположения в памяти. Для получения адреса очередной команды достаточно увеличить содержимое счетчика команд на длину текущей команды. В то же время основные преимущества ЭВМ заключаются именно в возможности изменения хода вычислении в зависимости от возникающих в процессе счета результатов. С этой целью в АСК вычислительной машины включаются команды, позволяющие нарушить естественный порядок следования и передать управление в иную точку программы. В адресной части таких команд содержится адрес точки перехода (адрес той команды, которая должна быть выполнена следующей). Переход реализуется путем загрузки адреса точки перехода в счетчик команд (вместо увеличения содержимого этого счетчика на длину команды).

В системе команд ЭВМ можно выделить три типа команд, способных изменить последовательность вычислений:

безусловные переходы;

условные переходы (ветвления);

вызовы процедур и возвраты из процедур.

Несмотря на то что присутствие в программе большого числа команд безусловного перехода считается признаком плохого стиля программирования, такие команды обязательно входят в АСК любой ЭВМ. Для их обозначения в языке ассемблера обычно используется английское слово jump (прыжок). Команда безусловного перехода обеспечивает переход по заданному адресу без проверки каких-либо условий.

^ Условный переход происходит только при соблюдении определенного условия, в противном случае выполняется следующая по порядку команда программы. Большинство производителей ЭВМ в своих ассемблерах обозначают подобные команды словом branch (ветвление). Условием, на основании которого осуществляется переход, чаще всего выступают признаки результата предшествующей арифметической или логической операции. Каждый из признаков фиксируется в своем разряде регистра флагов процессора. Возможен и иной подход, когда решение о переходе принимается в зависимости от состояния одного из регистров общего назначения, куда предварительно помещается результат операции сравнения. Третий вариант — это объединение операций сравнения и перехода в одной команде.

В системе команд ЭВМ для каждого признака результата предусматривается своя команда ветвления (иногда — две: переход при наличии признака и переход при его отсутствии). Большая часть условных переходов связана с проверкой взаимного соотношения двух величин или с равенством (неравенством) некоторой величины нулю. Последний вид проверок используется в программах наиболее интенсивно.

Процедурный механизм базируется на командах вызова процедуры, обеспечивающих переход из текущей точки программы к начальной команде процедуры, и командах возврата из процедуры, для возврата в точку, непосредственно расположенную за командой вызова. Такой режим предполагает наличие средств для сохранения текущего состояния содержимого счетчика команд в момент вызова (запоминание адреса точки возврата) и его восстановления при выходе из процедуры,

^ 2.8.7 Форматы команд

Типовая команда, в общем случае, должка указывать:

подлежащую выполнению операцию;

адреса исходных данных (операндов), над которыми выполняется операция;

адрес, по которому должен быть помещен результат операции.

В соответствии с этим команда состоит из двух частей: операционной и адресной, как показано на рисунке 2.24.

Рисунок 2.24 – Структура машинной команды

Формат команды определяет ее структуру, то есть количество двоичных разрядов, отводимых под всю команду, а также количество н расположение отдельных полей команды. Полем называется совокупность двоичных разрядов, кодирующих составную часть команды. При разработке АСК выбор формата команды влияет на многие характеристики будущей машины. Оценивая возможные форматы, нужно учитывать следующие факторы:

общее число различных команд;

общую длину команды;

тип полей команды (фиксированной или переменной длины) и их длина;

простоту декодирования;

адресуемость и способы адресации;

стоимость оборудования для декодирования и исполнения команд.

Длина команды – это важнейшее обстоятельство, влияющее на организацию и емкость памяти, структуру шин, сложность и быстродействие ЦП. С одной стороны, удобно иметь в распоряжении мощный набор команд, то есть как можно больше кодов операций, операндов, способов адресации, и максимальное адресное пространство. Однако все это требует выделения большего количества разрядов под каждое поле команды, что приводит к увеличению ее длины. Вместе с тем, для ускорения выборки из памяти желательно, чтобы команда была как можно короче, а ее длина была равна или кратна ширине шины данных. Для упрощения аппаратуры и повышения быстродействия ЭВМ длину команды обычно выбирают кратной байту, поскольку в большинстве ЭВМ основная память организована в виде 8-битовых ячеек.

В рамках системы команд одной ЭВМ могут использоваться разные форматы команд. Обычно это связано с применением различных способов адресации. В таком случае операционная часть команды содержит поле кода операции (КОп) и поле для задания способа адресации (СА).

Общая длина команды RK может быть определена следующим соотношением:

,

где l – количество адресов в команде; RAi – количество разрядов для записи i-го адреса; RКОп – разрядность поля кода операции; RСА – разрядность поля способа адресации.

Количество двоичных разрядов, отводимых под код операции, выбирается так, чтобы можно было представить любую из операций. Если система команд предполагает NКОп различных операций, то минимальная разрядность поля кода операции определяется следующим образом:

RКОп = int(log2(NКОп)),

где int означает округление в большую сторону до целого числа.

При заданной длине кода команды приходится искать компромисс между разрядностью поля кода операции и адресного поля. Большее количество возможных операций предполагает длинное поле кода операции, что ведет к сокращению адресного поля, то есть к сужению адресного пространства. Для устранения этого противоречия иногда длину поля кода операции варьируют. Изначально под код операции отводится некое фиксированное число разрядов, однако для отдельных команд это поле расширяется за счет нескольких битов, отнимаемых у адресного поля.

В адресной части команды содержится информация о местонахождении исходных данных и месте сохранения результата операции. Обычно местонахождение каждого из операндов и результата задается в команде путем указания адреса соответствующей ячейки основной памяти или номера регистра процессора. Принципы использования информации из адресной части команды определяет система адресации. Система адресации задает число адресов в команде команды и принятые способы адресации

Разрядности полей и рассчитываются по формулам:

RAi = int(log2(Ni)), RCA = int(log2(NCA)),

где Ni, – количество ячеек памяти, к которому можно обратиться с помощью i-ro адреса; NСА – количество способов адресации.

Для определения количества адресов, включаемых в адресную часть, будем использовать термин адресность. В «максимальном» варианте необходимо указать три компонента: адрес первого операнда, адрес второго операнда и адрес ячейки, куда заносится результат операции. В принципе может быть добавлен еще один адрес, указывающий место хранения следующей инструкции. В итоге имеет место четырехадресный формат команды. Такой формат представлен на рисунке 2.25.

Чаще всего необходимость в четвертом адресе отпадает, поскольку команды располагаются в памяти в порядке их выполнения, и адрес очередной команды может быть получен за счет простого увеличения адреса текущей команды в счетчике команд. Это позволяет перейти к трехадресному формату команды. Требуется только добавить в систему команд ЭВМ команды, способные изменять порядок вычислений.

К сожалению, и в трехадресном формате длина команды может оказаться весьма большой. Так, если адрес ячейки основной памяти имеет длину 32 бита, а длина кода операции – 8 бит, то длина команды составит 104 бита (13 байт).

Рисунок 2.25 – Четырехадресный формат команды

Если по умолчанию взять в качестве адреса результата адрес одного из операндов (обычно второго), то можно обойтись без третьего адреса, и в итоге получаем двухадресный формат команды. Естественно, что в этом случае соответствующий операнд после выполнения операции теряется.

Команду можно еще более сократить, перейдя к одноадресному формату, что возможно при выделении определенного стандартного места для хранения первого операнда и результата. Обычно для этой цели используется специальный регистр-аккумулятор центрального процессора (ЦП).

Применение единственного регистра для хранения одного из операндов и результата является ограничивающим фактором, поэтому помимо аккумулятора часто используют и другие регистры ЦП. Так как число регистров к ЦП невелико, для указания одного из них в команде достаточно иметь сравнительно короткое адресное поле. Соответствующий формат носит название полутораадресного или регистрового формата.

Наконец, если для обоих операндов указать четко заданное местоположение, а также в случае команд, не требующих операнда, можно получить нульадресный формат команды. В таком варианте адресная часть команды вообще отсутствует или не задействуется

При выборе количества адресов в адресной части команды обычно руководствуются следующими критериями:

емкостью запоминающего устройства, требуемой для хранения программы;

временем выполнения программы;

эффективностью использования ячеек памяти при хранении программы.

Время выполнения одной команды складывается из времени выполнения операции и времени обращения к памяти. Для трехадресной команды последнее суммируется из четырех составляющих времени:

выборки команды;

выборки первого операнда;

выборки второго операнда;

Одноадресная команда требует двух обращений к памяти:

выборки команды;

выборки операнда.

Как видно, на выполнение одноадресной команды затрачивается меньше времени, чем на обработку трехадресной команды, однако для реализации одной трехадресной команды, как правило, нужно три одноадресных. Этих соображении тем не менее не достаточно, чтобы однозначно отдать предпочтение тому или иному варианту адресности. Определяющим при выборе является тип алгоритмов, на преимущественную реализацию которых ориентирована конкретная ЭВМ.