Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Приводы строительных машин.doc
Скачиваний:
45
Добавлен:
11.06.2015
Размер:
232.96 Кб
Скачать

Глава 3. Приводы строительных машин. Силовое оборудование

3.1. Общие понятия и определения

Приводом называют энергосиловое устройство, приводящее в движение машину. Привод состоит из источника энергии (сило­вой установки), передаточного устройства (трансмиссии) и сис­темы управления для приведения в действие механизмов маши­ны, а также для их отключения.

Силовой установкой называют комплект, состоящий из двига­теля и обслуживающих его устройств. Например, в случае двигате­ля внутреннего сгорания — топливного бака, устройств для ох­лаждения, отвода выхлопных газов и т. п.

Трансмиссии могут быть механическими, электрическими, гид­равлическими, пневматическими и смешанными. Только в меха­нических и смешанных трансмиссиях на их механических участ­ках механическое движение передается без его преобразования в другие формы энергии. Во всех других случаях вращательное дви­жение выходного вала двигателя силовой установки с помощью электрогенераторов, гидравлических или пневматических насо- | сов преобразуется соответственно в электрическую энергию, энергию движения рабочей жидкости или энергию сжатого воз­духа, которая поступает к электро-, гидро- или пневмодвигате-лям, повторно преобразующим ее в механическое движение. Все указанные двигатели входят в состав трансмиссий. Соответствен­но различают электрические, гидравлические и пневматические трансмиссии.

Обычно свое наименование привод получает по типу двигате­ля силовой установки (от карбюраторного двигателя, дизельный), виду используемой энергии внешнего источника (электрический, I пневматический) или типу трансмиссии (гидравлический, дизель- ' электрический и т.п.).

Если на машине установлено нескольких рабочих органов или исполнительных механизмов и все они приводятся в движение от одного двигателя, то привод называют одномоторным или группо­вым. Если же часть или все рабочие органы, или исполнительные механизмы приводятся от собственных двигателей, то привод на­зывают многомоторным. При индивидуальном приводе исполнитель­ных механизмов трансмиссионные двигатели могут питаться энер-

32

гией от одного генератора (насоса), индивидуально — каждый дви­гатель от своего генератора (индивидусыьный привод) или по сме­шанной схеме. В случае использования индивидуального электри­ческого привода каждый электродвигатель, приводящий в движе­ние соответствующий рабочий орган или исполнительный меха­низм, может питаться непосредственно от электросети. В последнее время на машинах с несколькими рабочими органами или испол­нительными механизмами используют преимущественно индиви­дуальный привод, обладающий более высоким коэффициентом по­лезного действия (КПД) по сравнению с групповым приводом, простотой и агрегатностью конструкции, лучшей приспособлен­ностью к автоматизации управления, лучшими условиями эксплу­атации и ремонта.

При оценке эффективности приводов строительных машин предпочтение следует отдавать тем приводам, которые имеют мень­шие габаритные размеры и массу, обладают высокой надежно­стью и готовностью к работе, высоким КПД, просты в управле­нии, более приспособлены к автоматизации управления, обеспе­чивают независимость рабочих движений и возможность их со­вмещения.

Рассмотрим более подробно сущность понятия передачи дви­жения рабочему органу машины в условиях преодоления им внеш­них сопротивлений. Основная составляющая этих сопротивлений определяется, прежде всего, свойствами преобразуемого матери­ала и характером процесса преобразования. Например, при рабо­те водоотливной насосной установки внешними сопротивления­ми будут: сила тяжести поднимаемой воды и силы трения при ее передвижении по трубопроводам. В этом случае сопротивления практически неизменны во времени. При разработке грунта ков­шом экскаватора, отвалом бульдозера и другими машинами со­противления копанию нарастают от минимального до максималь­ного значения, многократно повторяясь в процессе каждой опе­рации копания.

В условиях постоянных или слабо изменяющихся во времени внешних сопротивлений привод работает в спокойном режиме практически с постоянной скоростью на его выходном звене. При изменяемых во времени внешних сопротивлениях, кроме внут­ренних сопротивлений, к ним добавляются динамические со­ставляющие, обусловленные внешней (механической) характери­стикой привода — функциональной зависимостью между его силовым и скоростным факторами на выходном звене. Обычно эти факторы связаны между собой обратной зависимостью — чем больше внешнее сопротивление, тем меньше скорость движения выходного звена. Такая зависимость представлена на рис. 3.1 для случая вращательного движения выходного звена привода, где через Г, со и л обозначены соответственно вращающий момент, угловая скорость и частота враще­ния выходного звена. Если, напри­мер, на временном интервале Д/ со­противление возрастает от Г, до Т2, то, согласно внешней характери­стике привода, угловая скорость снижается за то же время с со ] до со2 — выходное звено вращается с замедлением. Согласно второму за­кону механики этому замедлению соответствует пропорциональный ему динамический момент проти­воположного внешнему сопротив­лению направления. Складываясь с внешним сопротивлением, ди­намический момент уменьшает его значение. Природа этого явле­ния заключается в том, что движущаяся система при снижении скорости расходует накопленную в ней энергию на преодоление возрастающих внешних сопротивлений.

С уменьшением внешних сопротивлений скорость со возраста­ет, ускорение положительно, а поэтому динамический момент также положителен, т.е. с возрастанием скорости энергия приво­да расходуется на преодоление внешних сопротивлений и на на­копление энергии в движущейся системе. Таким образом, при­вод как бы выравнивает приведенное к его выходному звену со­противление с одновременным снижением скорости при возраста­нии внешнего сопротивления и ее увеличением при снижении пос­леднего. Такая приспособленность привода к условиям его нагру-жения будет тем больше, чем больше момент инерции враща­ющихся масс привода и чем меньше первая производная/= dT/d(a, называемая жесткостью механической характеристики привода. Ха­рактеристики с высокими значениями этой величины называют жесткими, а с низкими значениями — мягкими. Степень жест­кости механической характеристики определяется, прежде всего, типом двигателя. Жесткость/может быть понижена за счет вклю­чения в состав привода дополнительных устройств, в частности — гидротрансформатора (см. гл. 5).

Для характеристики режимов работы привода отдельных меха­низмов и машин в целом пользуются отношениями максимальных значений усилий (вращающих моментов) Ртахтах) и скоростей t>max (comax) на выходном звене привода к их средним значениям соот­ветственно Рсрср) и vcp (соср), продолжительностью включений (ПВ) в процентах от общего времени работы машины и количеством вклю­чений KB в час. В зависимости от степени изменения этих парамет­ров, которые колеблются в пределах Tmm/Tcp = 1,1... 3,0 (для враща­тельного движения), ПВ = 15... 100 %, KB = 10...600, режимы нагру-жения многих машин и их механизмов условно подразделяют на

легкий, средний, тяжелый и весьма тяжелый. Для некоторых ма­шин, например строительных кранов, для определения режимов работы используют также другие дополнительные факторы. Важ­ной характеристикой привода, определяющей его способность пре­одолевать сопротивления, значительно превышающие их средние значения, является коэффициент перегрузочной способности кперотношение максимального момента 7^ по механической характе­ристике привода к его номинальному значению Тн.