Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
щщщ.doc
Скачиваний:
77
Добавлен:
11.06.2015
Размер:
513.54 Кб
Скачать

5. Реализация понятия последовательного процесса в ос

Для того чтобы операционная система могла управлять процессами, она должна располагать всей необходимой для этого информацией. С этой целью на каждый процесс заводится специальная информационная структура, называемая дескриптором процесса (описателем задачи, блоком управления задачей). В общем случае дескриптор процесса содержит следующую информацию:

* идентификатор процесса (так называемый PID – process identificator);

  • тип (или класс) процесса, который определяет для супервизора некоторые правила предоставления ресурсов;

  • приоритет процесса, в соответствии с которым супервизор предоставляет ресурсы. В рамках одного класса процессов в первую очередь обслуживаются более приоритетные процессы;

  • переменную состояния, которая определяет, в каком состоянии находится процесс (готов к работе, в состоянии выполнения, ожидание устройства ввода/вывода и т. д.);

  • защищённую область памяти (или адрес такой зоны), в которой хранятся текущие значения регистров процессора, если процесс прерывается, не закончив работы. Эта информация называется контекстом задачи;

*информацию о ресурсах, которыми процесс владеет и/или имеет право пользоваться (указатели на открытые файлы, информация о незавершенных операциях ввода/вывода и т. п.);

* место (или его адрес) для организации общения с другими процессами;

  • параметры времени запуска (момент времени, когда процесс должен активизироваться, и периодичность этой процедуры);

  • в случае отсутствия системы управления файлами – адрес задачи на диске в её исходном состоянии и адрес на диске, куда она выгружается из оперативной памяти, если её вытесняет другая (для диск-резидентных задач, которые постоянно находятся во внешней памяти на системном магнитном диске и загружаются в оперативную память только на время выполнения).

Описатели задач, как правило, постоянно располагаются в оперативной памяти с целью ускорить работу супервизора, который организует их в списки (очереди) и отображает изменение состояния процесса перемещением соответствующего описателя из одного списка в другой. Для каждого состояния (за исключением состояния выполнения для однопроцессорной системы) операционная система ведет соответствующий список задач, находящихся в этом состоянии. Однако для состояния ожидания может быть не один список, а столько, сколько различных видов ресурсов могут вызывать состояние ожидания. Например, состояний ожидания завершения операции ввода/вывода может быть столько, сколько устройств ввода/вывода имеется в системе.

6. Понятие процесса и потока.

  • Понятие процесса было введено для реализации идей мультипрограммирования.

  • Для реализации мультизадачности необходимо было тоже ввести соответствующую сущность. Такой сущностью и стали так называемые «легковесные» процессы, или, как их теперь преимущественно называют, — потоки или треды (Threadпоток, нить).

  • Когда говорят о процессах (process), то тем самым хотят отметить, что операционная система поддерживает их обособленность: у каждого процесса имеется свое виртуальное адресное пространство, каждому процессу назначаются свои ресурсы — файлы, окна, семафоры и т. д. Такая обособленность нужна для того, чтобы защитить один процесс от другого, поскольку они, совместно используя все ресурсы вычислительной системы, конкурируют друг с другом. В общем случае процессы просто никак не связаны между собой и могут принадлежать даже разным пользователям, разделяющим одну вычислительную систему.

  • Если программные модули, исполняющие такие операции, оформлять в виде самостоятельных «подпроцессов» (легковесных или облегченных процессов — потоков, можно также воспользоваться термином задача), которые будут выполняться параллельно с другими «подпроцессами» (потоками, задачами), то у пользователя появляется возможность параллельно выполнять несколько операций в рамках одного приложения (процесса).

  • Легковесными эти задачи называют потому, что операционная система не должна для них организовывать полноценную виртуальную машину.

  • Эти задачи не имеют своих собственных ресурсов, они развиваются в том же виртуальном адресном пространстве, могут пользоваться теми же файлами, виртуальными устройствами и иными ресурсами, что и данный процесс. Единственное, что им необходимо иметь, — это процессорный ресурс.

  • В однопроцессорной системе треды (задачи) разделяют между собой процессорное время так же, как это делают обычные процессы, а в мультипроцессорной системе могут выполняться одновременно, если не встречают конкуренции из-за обращения к иным ресурсам.

  • Главное, что обеспечивает многопоточность, — это возможность параллельно выполнять несколько видов операций в одной прикладной программе.

  • Программа, оформленная в виде нескольких тредов в рамках одного процесса, может быть выполнена быстрее за счет параллельного выполнения ее отдельных частей.

  • Сущность «процесс» предполагает, что при диспетчеризации нужно учитывать все ресурсы, закрепленные за ним. А при манипулировании тредами можно менять только контекст задачи, если мы переключаемся с одной задачи на другую в рамках одного процесса. Все остальные вычислительные ресурсы при этом не затрагиваются. Каждый процесс всегда состоит по крайней мере из одного потока, и только если имеется внутренний параллелизм, программист может «расщепить» один тред на несколько параллельных.

  • Каждый тред выполняется строго последовательно и имеет свой собственный программный счетчик и стек. Треды, как и процессы, могут порождать треды-потомки, поскольку любой процесс состоит по крайней мере из одного треда. Подобно традиционным процессам (то есть процессам, состоящим из одного треда), каждый тред может находится в одном из активных состояний. Пока один тред заблокирован (или просто находится в очереди готовых к исполнению задач), другой тред того же процесса может выполняться. Треды разделяют процессорное время так же, как это делают обычные процессы, в соответствии с различны­ми вариантами диспетчеризации.

  • Все треды имеют одно и то же виртуальное адресное пространство своего процесса. Это означает, что они разделяют одни и те же гло­бальные переменные. Поскольку каждый тред может иметь доступ к каждому виртуальному адресу, один тред может использовать стек другого треда. Между потоками нет полной защиты.

  • Кроме разделения адресного пространства, все треды разделяют также набор открытых файлов, используют общие устройства, выделенные процессу, имеют одни и те же наборы сигналов, семафоры и т. п.

  • Собственными являются программный счетчик, стек, рабочие регистры процессора, потоки-потомки, состояние.