Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
70 МУ.docx
Скачиваний:
66
Добавлен:
09.06.2015
Размер:
1.07 Mб
Скачать

Работа 70

Движение электронов в магнитном поле

Цель работы. Определение удельного заряда электрона по известной траектории пучка электронов в электрическом и переменном магнитном полях.

Приборы и принадлежности: экспериментальная установка марки «PHYWE» фирмы HYWE Systems GmbH & Co. (Германия) в составе: электронно-лучевая трубка; катушки Гельмгольца (1 пара); источник питания универсальный (2 шт.); цифровой мультиметр (2 шт.); разноцветные соединительные шнуры.

Введение

Удельным зарядом элементарной частицы называют отношение заряда частицы к её массе . Эта характеристика широко применяется для идентификации частиц, так как позволяет отличать друг от друга разные частицы, имеющие одинаковые заряды (например, электроны от отрицательно заряженных мюонов, пионов и др.).

Удельный заряд электронаотносится к фундаментальным физическим постоянным, таким как заряд электронае, скорость света с, постоянная Планка h и др. Его теоретическое значение составляет величину = (1,75896 ± 0,00002)∙1011 Кл∙кг-1.

Многочисленные экспериментальные методы определения удельного заряда частиц основаны на исследованиях особенностей их движения в магнитном поле. Дополнительные возможности представляет использование конфигурации магнитного и электрического полей и варьирование их параметров. В данной работе определяется удельный заряд электрона на экспериментальной установке марки «PHYWE» немецкого производства. В ней для изучения траекторий движения электронов в магнитном поле реализован метод, основанный на сочетании возможностей варьирования параметров однородных магнитного и электрического полей при их взаимно перпендикулярной конфигурации. Данное методическое пособие разработано с использованием документации, поставленной в комплекте с установкой.

Магнитное поле. Опыты показывают, что магнитное поле действует на движущиеся в нём заряженные частицы. Силовой характеристикой, определяющей подобное его действие, является магнитная индукция – векторная величина В. Магнитное поле изображают с помощью силовых линий магнитной индукции, касательные к которым в каждой точке совпадают с направлением вектора B. При однородном магнитном поле вектор B постоянен по величине и направлению в любой точке поля. Сила, действующая на заряд q, движущийся со скоростью V в магнитном поле, была определена немецким физиком Г. Лоренцем (сила Лоренца). Она выражается формулой

Fл = q[ VB] или Fл = |q|VBsinα (1)

где α угол, образованный вектором скорости V движущейся частицы и вектором индукции магнитного поля В.

На неподвижный электрический заряд магнитное поле не действует. В этом его существенное отличие от поля электрического.

Направление силы Лоренца определяется с помощью правила «левой руки». Если ладонь левой руки расположить так, чтобы в неё входил вектор B, а четыре вытянутых пальца направить вдоль

направления движения положительных зарядов (q>0), совпадающие с направлением тока I (), то отогнутый большой палец

Рис.1

покажет направление силы, действующей на положительный заряд (q>0) (рис. 1). В случае отрицательных зарядов (q<0) направления тока I и скорости V движения противоположны. Направление силы Лоренца определяется по направлению тока. Таким образом, сила Лоренца перпендикулярна вектору скорости, поэтому модуль скорости не будет меняться под действием этой силы. Но при постоянной скорости, как следует из формулы (1), остаётся постоянным и значение силы Лоренца. Из механики известно, что постоянная сила, перпендикулярная скорости, вызывает движение по окружности, то есть является центростремительной. При отсутствии других сил, согласно второму закону Ньютона, она сообщает заряду центростремительное или нормальное ускорение . Траектория движения заряда в однородном магнитном поле приVB представляет собой окружность (рис.2), радиус которой r определяется из условия

, (2)

где α – угол между векторами V и B.

В случае α = 900, sinα = 1 из формулы (2) радиус круговой траектории заряда определяется формулой

(3)

Работа, совершаемая над движущейся зарядом в магнитном поле постоянной силой Лоренца, равна

ΔА = Fл.Δr

или ΔА = Fл.Δr cosβ, (4)

где β – угол между направлением векторов силы Fл. и направлением вектора перемещения Δr.

Так как всегда выполняется условие Fл Δr, β = 900 и cosβ = 0, то работа, совершаемая силой Лоренца, как следует из (4), всегда равна нулю. Следовательно, абсолютное значение скорости заряда и его кинетическая энергия при движении в магнитном поле остаются постоянными.

Период вращения (время одного полного оборота), равен

(5)

Рис.2

Подставив в (5) вместо радиуса r его выражение из (3), получим, что кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы, зависит только от индукции магнитного поля и величины, обратной удельному заряду:

. (6)

Если магнитное поле однородно, но начальная скорость заряженной частицы V направлена под углом α к силовым линиям В, то движение можно представить как суперпозицию двух движений: равномерного прямолинейного в направлении, параллельном магнитному полю со скоростью V// = Vcosα и равномерного

Рис.3

вращения под действием силы Лоренца в плоскости, перпендикулярной магнитному полю cо скоростью V = Vsinα.

В результате траектория движения частицы будет представлять собой винтовую линию (рис.3).

Шаг винтовой линии равен расстоянию, пройденному зарядом вдоль поля со скоростью V// за время, равное периоду вращения

h = VТcos, (7)

где .

Подставив это выражение для Т в (7), получим

. (8)

Ось спирали параллельна силовым линиям магнитного поля B.

Электрическое поле. На точечный заряд q, помещённый в электрическое поле, характеризующееся вектором напряжённости E, действует сила

F = qE, (9)

Направление силы F совпадает с направлением вектора E, если заряд положительный, и противоположно E в случае отрицательного заряда. В однородном электрическом поле вектор напряжённости в любой точке поля постоянен по величине и направлению. Если движение происходит только вдоль силовых линий однородного электрического поля, оно является равноускоренным прямолинейным.

По второму закону Ньютона F = ma уравнение движения заряда в электрическом поле выражается формулой

qE = (10)

Предположим, что точечный отрицательный заряд, двигающийся первоначально вдоль оси Х со скоростью V, попадает в однородное электрическое поле между пластинами плоского конденсатора, как показано на рис. 4.

Рис. 4

Движение заряда вдоль оси X является равномерным, его кинематическое уравнение x = x0 + Vt (x0 начальная координата, t время), V = const, x0 = 0. Время пролёта зарядом конденсатора с длиной пластин равно .

Движение вдоль оси Y определяется электрическим полем внутри конденсатора. Если зазор между пластинами мал по сравнению с их длиной, краевыми эффектами можно пренебречь и электрическое поле в пространстве между пластинами считатьоднородным (Еy = const). Движение заряда будет равноускоренным Vy = V0y + at. Ускорение определяется с формулой (10). Выполнив интегрирование (10), получим ,где С постоянная интегрирования. При начальном условии (t = 0) V0y = 0 получим C = 0. .

Траектория и характер движения заряженной частицы в однородном электрическом поле плоского конденсатора подобны аналогичным характеристикам движения в гравитационном поле брошенного горизонтально тела. Отклонение заряженной частицы вдоль оси Y равно . С учётом характера действующей силы оно зависит отсогласно формуле.

При перемещении заряда в электрическом поле между точками, имеющими разность потенциалов U, электрическим полем совершается работа, вследствие чего заряд приобретает кинетическую энергию. В соответствии с законом сохранения энергии

.

Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряжённостью E, то результирующая сила F, определяющая его движение, равна векторной сумме силы, действующей со стороны электрического поля и силы Лоренца

Fэм = qE + q[VB]. (11)

Это выражение называется формулой Лоренца.

В данной лабораторной работе исследуется движение электронов в магнитном и электрическом полях. Все соотношения, рассмотренные выше для произвольного заряда, справедливы и для электрона.

Считаем, что начальная скорость электрона равняется нулю. Попадая в электрическое поле, заряд ускоряется в нём, и, пройдя разность потенциалов U, приобретает некоторую скорость V. Её можно определить из закона сохранения энергии. В случае нерелятивистских скоростей (V << скорости света c) имеющего вид

, (12)

где е = –1,6∙10-19Кл – заряд электрона, me = 9,1∙10-31 кг – его масса.

Из (12) скорость электрона

.

Подставляя её в (3), получим формулу для нахождения радиуса окружности, по которой движется электрон в магнитном поле:

. (13)

Таким образом, зная разность потенциалов U, ускоряющую электроны при их движении в электрическом поле до нерелятивистских скоростей, индукцию однородного магнитного поля B, в котором эти электроны движутся, описывая круговую траекторию, и, экспериментально определяя радиус указанной круговой траектории r, можно вычислить удельный заряд электрона по формуле

(14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]