Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

belov_s_v_red_bezopasnost_zhiznedeyatelnosti

.pdf
Скачиваний:
513
Добавлен:
08.06.2015
Размер:
4.94 Mб
Скачать

Исследования состава отработавших газов ДВС показывают, что в них содержится несколько десятков компонентов, основные из которых приведены в табл. 10.1. Диоксид серы образуется в отработавших газах в том случае, когда сера содержится в исходном топливе (дизельное топливо).

Анализ данных, приведенных в табл. 10.1, показывает, что наибольшей токсичностью обладает выхлоп карбюраторных ДВС за счет большого выброса оксида углерода, оксидов азота, углеводородов и др. Дизельные ДВС выбрасывают в больших количествах сажу, которая в чистом виде нетоксична. Однако частицы сажи, обладая высокой адсорбционной способностью, несут на своей поверхности частицы токсичных веществ, в том числе и канцерогенных. Сажа может длительное время находиться во взвешенном состоянии в воздухе,

увеличивая время воздействия токсичных веществ

на человека.

Т а б л и ц а

10.1. Состав отработавших газов ДВС

 

 

 

 

 

Компонент

 

Объемная доля компонента, %

Примечание

 

карбюраторные ДВС

дизельные

 

Азот

 

74...77

76...78

Не токсичны

Кислород

 

0,3...8

2...18

 

Пары воды

 

3,0...5,5

0,5...4,0

 

Диоксид углерода

 

5,0...12,0

1,0...10,0

 

Водород

 

0...5,0

-

 

Оксид углерода

 

0,5...12,0

0,01...0,50

Токсичны

Оксиды азота (в пере-

 

До 0,8

0,0002...0,5

 

счете на N205)

 

0,2...3,0

0,009...0,5

 

Углеводороды

 

 

Альдегиды

 

До 0,2 мг/л

0,001...0,09 мг/л

 

Сажа

 

0...0,04 г/м3

0,01...1,1 г/м3

 

Бенз(а)пирен

 

10...20 мкг/м3

До 10 мкг/м3

 

Состав отработавших газов ДВС зависит от режима работы двигателя. У двигателя, работающего на бензине, при неустановившихся режимах (разгоне, торможении) нарушаются процессы смесеобразования, что способствует повышенному выделению токсичных продуктов. В дизелях с уменьшением нагрузки содержание токсичных компонентов отработавших газах уменьшается, а при работе на режиме максимальной нагрузки возрастает за счет роста выбросов оксида углерода, оксидов азота и углеводородов.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния ав-

271

томобилей и особенно от двигателя — источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы оксида углерода увеличиваются в 4...5 раз. Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70 % свинца, добавленного к бензину с этиловой жидкостью, попадает в виде соединений в атмосферу с отработавшими газами, из них 30 % оседает на земле сразу за срезом выпускной трубы автомобиля, 40 % остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5...3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине:

Концентрация

свинца в бензине, г/л

0,15

0,20

0,25

0,50

Концентрация свинца в воздухе, мкг/м3

0,40

0,50

0,55

1,00

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина неэтилированным.

10.1.2. Средства защиты атмосферы

Требования к выбросам в атмосферу. Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Во всех случаях должно соблюдаться условие

С + сф < ПДК

(10.2)

по каждому вредному веществу (сф — фоновая концентрация), а при наличии нескольких вредных веществ однонаправленного действия — условие (0.2). Соблюдение этих требований достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

— вывод токсичных веществ из помещений общеобменной вентиляцией;

272

Рис. 10.2. Схемы использования средств защиты атмосферы:

/ — источник токсичных веществ; 2 — устройство для локализации токсичных веществ (местный отсос); 3 — аппарат очистки; 4 — устройство для забора воздуха из атмосферы; 5 — труба для рас-

сеивания выбросов; 6 — устройство (воздуходувка) для подачи воздуха на разбавление выбросов

локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху (рис. 10.2, а);

локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере (см. рис. 10.2, б);

очистка технологических газов выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом (см. рис. 10.2, в);

очистка отработавших газов энергоустановок, например двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.) (см. рис. 10.2, г).

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс

273

Рис. 10.3. Распределение концентрации вредных веществ в атмосфере у земной поверхности от организованного высокого источника выбросов:

А — зона неорганизованного загрязнения; Б — зона переброса факела; В — зона задымления;

Г— зона постепенного снижения уровня загрязнения

(ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.3.02—78 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создадут приземную концентрацию, превышающую ПДК.

Рассеивание выбросов в атмосфере. Технологические газы и вентиляционный воздух после выхода из труб или вентиляционных устройств подчиняются законам турбулентной диффузии. На рис. 10.3 показано распределение концентрации вредных веществ в атмосфере под факелом организованного высокого источника выброса. По мере удаления от трубы в направлении распространения промышленных выбросов можно условно выделить три зоны загрязнения атмосферы: переброса факела выбросов Б, характеризующаяся относительно невысоким содержанием вредных веществ в приземном слое атмосферы; задымления В с максимальным содержанием вредных веществ и постепенного снижения уровня загрязнения Г. Зона задымления наиболее опасна для населения и должна быть исключена из селитебной застройки. Размеры этой зоны в зависимости от метеорологических условий находятся в пределах 10...49 высот трубы.

Максимальная концентрация примесей в приземной зоне пропорциональна производительности источника и обратно пропорциональна квадрату его высоты над землей. Подъем горячих струй почти полностью обусловлен подъемной силой газов, имеющих более высокую температуру, чем окружающий воздух. Повышение температуры

274

и момента количества движения выбрасываемых газов приводит к увеличению подъемной силы и снижению их приземной концентрации.

Распространение газообразных примесей и пылевых частиц диаметром менее 10 мкм, имеющих незначительную скорость осаждения, подчиняется общим закономерностям. Для более крупных частиц эта закономерность нарушается, так как скорость их осаждения под действием силы тяжести возрастает. Поскольку при очистке от пыли крупные частицы улавливаются, как правило, легче, чем мелкие, в выбросах остаются очень мелкие частицы; их рассеивание в атмосфере рассчитывают так же, как и газовые выбросы.

В зависимости от расположения и организации выбросов источники. загрязнения воздушного пространства подразделяют на затененные и незатененные, линейные и точечные. Точечными источники считают тогда, когда удаляемые загрязнения сосредоточены в одном месте. К ним относят выбросные трубы, шахты, крышные вентиляторы и другие источники. Выделяющиеся из них вредные вещества при рассеивании не накладываются одно на другое на расстоянии двух высот здания Д д . Линейные источники имеют значительную протяженность в направлении, перпендикулярном ветру. Это аэрационные фонари, открытые окна, близко расположенные вытяжные шахты и крышные вентиляторы.

Незатененные, или высокие, источники свободно расположены в недеформированном потоке ветра. К ним относят высокие трубы, а также точечные источники, удаляющие загрязнения на высоту, превышающую 2,5 #з д . Затененные, или низкие, источники расположены в зоне подпора или аэродинамической тени, образующейся на здании или за ним (в результате обдувания его ветром) на высоте до h < 2,5 Язд.

Основным документом, регламентирующим расчет рассеивания и определения приземных концентраций выбросов промышленных предприятий, является «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД—86». Эта методика позволяет решать задачи по определению ПДВ при рассеивании через одиночную незатененную трубу, при выбросе через низкую затененную трубу и при выбросе через фонарь из условия обеспечения ПДК в приземном слое воздуха.

При определении ПДВ примеси от расчетного источника необходимо учитывать ее концентрацию сф в атмосфере, обусловленную выбросами от других источников. Для случая рассеивания нагретых выбросов через одиночную незатененную трубу

275

пдв=

(ПДК-сф 2 УОАГ

(10.3)

AkFmn

 

где И — высота трубы; Q — объем расходуемой газовоздушной смеси, выбрасываемой через трубу; Д77— разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего атмосферного воздуха, равной средней температуре самого жаркого месяца в 13 ч; А — коэффициент, зависящий от температурного градиента атмосферы и определяющий условия вертикального и горизонтального рассеивания вредностей; kF коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере; т и п — безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья трубы.

Оборудование для очистки выбросов. В тех случаях, когда реальные выбросы превышают ПДВ, необходимо в системе выброса использовать аппараты для очистки газов от примесей.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются эффективность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

Л (^ВХ ^вых)/ B X J

(10.4)

где свх и св ых — массовые концентрации примесей в газе до и после аппарата.

В ряде случаев для пылей используется понятие фракционной эффективности очистки

где свх/ и св ы х/ — массовые концентрации /-й фракции пыли до и после пылеуловителя.

Для оценки эффективности процесса очистки также используют коэффициент проскока веществ К через аппарат очистки:

(10.5)

276

Как следует из формул (10.4) и (10.5), коэффициент проскока и эффективность очистки связаны соотношением К= 1 — г|.

Гидравлическое сопротивление аппаратов очистки Ар определяют как разность давлений газового потока на входе аппарата рвх и выходе рвых из него. Значение Ар находят экспериментально или рассчитывают по формуле

Ap=pBX-pBblx = £)pJV2/2,

(10.6)

где \ — коэффициент гидравлического сопротивления аппарата; р и W— плотность и скорость газа в расчетном сечении аппарата.

Если в процессе очистки гидравлическое сопротивление аппарата изменяется (обычно увеличивается), то необходимо регламентировать его начальное Аршч и конечное значение Аркон. При достижении Ар = Аркон процесс очистки нужно прекратить и провести регенерацию (очистку) аппарата. Последнее обстоятельство имеет принципиальное значение для фильтров. Для фильтров Аркон = (2...5)Арнач.

Мощность N побудителя движения газов определяется гидравлическим сопротивлением и объемным расходом Дочищаемого газа:

N= kApQ/(r] мЛв),

где

коэффициент запаса мощности, обычно к — 1,1...1,15;

г|м — КПД передачи мощности от электродвига-

 

теля к вентилятору; обычно г|м = 0,92...0,95; г|в

Очищенный

КПД

вентилятора; обычно г|в = 0,65...0,8.

газ

Широкое применение для очистки газов от

 

частиц получили сухие пылеуловители — цикло-

 

ны (рис. 10.4) различных типов. Газовый поток

 

вводится в циклон через патрубок 2 по касатель-

 

ной к внутренней поверхности корпуса 1 и со-

 

вершает вращательно-поступательное движе-

 

ние вдоль корпуса к бункеру 4. Под действием

 

центробежной силы частицы пыли образуют на

 

стенке циклона пылевой слой, который вместе с

 

частью газа попадает в бункер. Отделение час-

 

тиц пыли от газа, попавшего в бункер, происхо-

 

дит при повороте газового потока в бункере на

 

180°. Освободившись от пыли, газовый поток

 

образует вихрь и выходит из бункера, давая на-

Пыль

чало вихрю газа, покидающему циклон через

 

выходную трубу 3. Для нормальной работы ци-

Рис. 10.4. Схема ци-

клона необходима герметичность бункера. Если

клона

277

бункер негерметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.

Многие задачи по очистке газов от пыли с успехом решаются цилиндрическими (ЦН-11, ЦН-15, ЦН-24, ЦП-2) и коническими (СК-ЦН-34, СК-ЦН-34М и СДК-ЦН-33) циклонами НИИОГАЗа. Цилиндрические циклоны НИИОГАЗа предназначены для улавливания сухой пыли аспирационных систем. Их рекомендуется использовать для предварительной очистки газов и устанавливать перед фильтрами или электрофильтрами.

Конические циклоны НИИОГАЗа серии СК, предназначенные для очистки газа от сажи, обладают повышенной эффективностью по сравнению с циклонами типа ЦН, что достигается за счет большего гидравлического сопротивления циклонов серии СК.

Для очистки больших масс газов применяют батарейные циклоны, состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки у таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами. Методика расчета циклонов приведена в работе [16].

Электрическая очистка (электрофильтры) — один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Аэрозольные частицы, поступающие в зону между коронирую-

щим 1 и осадительным 2 электродами (рис. 10.5), адсорбируют на

 

 

 

 

 

своей поверхности ионы, приобретая электриче-

 

 

 

 

 

ский заряд, и получают тем самым ускорение,

 

- +

 

направленное в сторону электрода с зарядом

 

 

 

 

 

Wr

 

 

противоположного знака. Процесс зарядки час-

JT

 

 

 

 

тиц зависит от подвижности ионов, траектории

 

 

w 3

 

 

движения и времени пребывания частиц в зоне

 

 

0

 

Л

коронирующего заряда. Учитывая, что в воздухе

 

 

 

 

и дымовых газах подвижность отрицательных

 

 

 

 

 

ионов выше, чем положительных, электро-

 

 

 

 

 

фильтры обычно делают с короной отрицатель-

 

 

 

 

 

ной полярности. Время зарядки аэрозольных

 

Рис. 10.5. Схема

частиц невелико и измеряется долями секунды.

 

Движение заряженных частиц к осадительному

 

электрофильтра

278

электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Большое значение для процесса осаждения пыли на электродах имеет электрическое сопротивление слоев пыли. По величине электрического сопротивления различают:

1) пыли с малым удельным электрическим сопротивлением (< 104 Ом • см), которые при соприкосновении с электродом мгновенно теряют свой заряд и приобретают заряд, соответствующий знаку электрода, после чего между электродом и частицей возникает сила отталкивания, стремящаяся вернуть частицу в газовый поток; противодействует этой силе только сила адгезии; если она оказывается недостаточной, то резко снижается эффективность процесса очистки;

2)пыли с удельным электрическим сопротивлением от 104 до 1010 Ом • см; они хорошо осаждаются на электродах и легко удаляются

сних при встряхивании;

3)пыли с удельным электрическим сопротивлением более Ю10 Ом • см; они труднее всего улавливаются в электрофильтрах, так как на электродах частицы разряжаются медленно, что в значительной степени препятствует осаждению новых частиц.

В реальных условиях снижение удельного электрического сопротивления пыли можно осуществить увлажнением запыленного газа.

Определение эффективности очистки запыленного газа в электрофильтрах обычно проводят по формуле Дейча:

• т| = 1 — е~^э Ч

(Ю.7)

где W3 — скорость движения частицы в электрическом поле, м/с; Fyjx — удельная поверхность осадительных электродов, равная отношению поверхности осадительных элементов к расходу очищаемых газов, м2 • с/м3. Из формулы (10.7) следует, что эффективность очистки газов зависит от показателя степени W3Fyn:

W3FyR

3,0

3,7

3,9

4,6

П

0,95

0,975

0,98

0,99

Конструкцию электрофильтров определяют состав и свойства очищаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и т. д. В промышленности используют несколько типовых конструкций сухих и мокрых электрофильтров [16], применяемых для очистки технологических выбросов (рис. 10.6).

279

Очищенный газ
Газ
Рис. 10.6. Электрофильтр типа С для улавливания смол:
1 — распределительные решетки; 2 — осадительные и коронирующие электроды; 3 — корпус; 4 — смолоулавли-
вающий зонт

Очищенный газ

Рис. 10.7. Схема фильтра

Эксплуатационные характеристики электрофильтров весьма чувствительны к изменению равномерности поля скоростей на входе в фильтр. Для получения высокой эффективности очистки необходимо обеспечить равномерный подвод газа к электрофильтру путем правильной организации подводящего газового тракта и применения распределительных решеток во входной части электрофильтра.

Для тонкой очистки газов от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред. Принципиальная схема процесса фильтрования в пористой перегородке показана на рис. 10.7. Фильтр представляет собой корпус 7, разделенный по-

ристой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки, образуя на поверхности перегородки слой J, и задерживаются в порах. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного эффектов.

Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.

280

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]