Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Polimery_k_otchetu.doc
Скачиваний:
194
Добавлен:
07.06.2015
Размер:
2.06 Mб
Скачать

Константы передачи цепи на растворители в процессе полимеризации метилметакрилата при 80ºС

Растворители

kпер104

Растворители

kпер104

Бензол

0,075

Хлороформ

1,4

Циклогексанон

0,101

Четыреххлористый

углерод

2,39

Толуол

0,52

Этилбензол

1,35

Тетрабромметан

3300

Изопропилбензол

1,90

Хлорбензол

0,2

Любым из рассмотренных выше методов получают сополимеры метилметакрилата с акрилатами, метакрилатами или другими виниловыми мономерами (стиролом, -метилстиролом, акрилонитрилом, винилацетатом). Так, сополимеризацией метилметакрилата и акрилонитрила в массе получают сополимер, отличающийся высокой ударной вязкостью и эластичностью. Сополимеризацией метилметакрилата с небольшими количествами полифункциональных соединений, например, с гликольдиметакрилатом или ангидридом метакриловой кислоты получают сшитый полимер, который не растворяется в обычных растворителях и не размягчается при температурах до 200ºС.

Синдиотактический кристаллизующийся ПММА получают полимеризацией метилметакрилата:

а) в присутствии инициаторов свободнорадикального типа (УФ-свет, бензоин) в полярных растворителях или в массе при низких температурах (например, при –40ºС);

б) в присутствии анионных катализаторов (алкоголятов или металлорганических соединений щелочных металлов, соединений Гриньяра) в сильнополярных средах (например, в тетрагидрофуране, аммиаке) при температурах около –60ºС.

Изотактический ПММА получают анионной полимеризацией метилметакрилата в неполярных растворителях (в толуоле, гексане, гептане или др.), например в присутствии бутиллития как катализатора в толуоле в температурном интервале от –60 до –70ºС, либо в присутствии реактива Гриньяра в толуоле с добавкой бромистого магния при 0ºС. В смесях полярного и неполярного растворителей образуются стереоблоксополимеры.

Применение и переработка. Суспензионный ПММА, получаемый в виде порошка, предварительно гранулируется на экструзионных машинах. Гранулированный ПММА перерабатывают прессованием, литьем под давлением, экструзией. Суспензионные полимеры используют в автомобильной промышленности (задние фонари, подфарники, световые отражатели и др.), в приборостроении (линзы, призмы), для изготовления изделий широкого потребления (посуда, пуговицы и др.) и канцелярских принадлежностей. Экструдированные из суспензионных полимеров и сополимеров листы используются для изготовления светотехнических изделий (например, рассеивателей света для светильников), вывесок и т.п.

Суспензионный ПММА с размером частиц 0,05 – 0,15 мм или высушенный эмульсионный ПММА применяют для изготовления самоотверждающихся пластмасс (55 – 60% полимера, 35 – 40% мономера, содержащего инициатор, с добавкой красителя). Эти пластмассы используются в производстве зубных протезов, для изготовления литейных моделей, абразивного инструмента, в качестве конструкционного материала в лазерной технике и т.д.

Акриловые дисперсии и полимеры, полученные в растворе, используются как лаки для кузовов автомобилей, для отделки тканей, волокон, бумаги, кож и т. д. В качестве клея для склеивания органического стекла используют мономерно-полимерную смесь или 20 – 30%-ные растворы ПММА (см. Полиакриловые клеи). Однако основная масса ПММА поставляется промышленностью главным образом в виде листового органического стекла.

За рубежом блочный ПММА производится под названиями: плексиглас (США, Германия, Франция), перспекс (Великобритания), кларекс (Япония), леофлекс (Швейцария), и др.; суспензионный – люсайт (США), диакон (Великобритания), плексигум (Германия), ведрил (Италия); сополимер метилметакрилата с акрилонитрилом – плексидур (Германия), имплекс (США). Стереорегулярные полимеры метилметакрилата не нашли пока широкого практического применения.

Органическое стекло (О. с.). Органическое стекло – это техническое название прозрачных твердых материалов на основе органических полимеров. К этой группе относят полиакрилаты, полиметакрилаты, полистирол, поликарбонаты, полимеры аллиловых соединений, сополимеры некоторых эфиров целлюлозы и др. В промышленности под «органическим стеклом» чаще всего понимают листовой материал, получаемый полимеризацией в массе метилметакрилата.

Получение. Полиметилметакрилатное О. с. получают полимеризацией метилметакрилата в массе в присутствии перекисных соединений, азо-бис-изобутиронитрила и др. В зависимости от назначения О. с. в состав полимеризационной смеси могут входить пластификаторы, красители, замутнители, стабилизаторы, а также другие акриловые мономеры.

Наиболее распространенные пластификаторы – эфиры фталевой кислоты. Для окрашивания О. с. применяют жирорастворимые и дисперсные красители, растворимые в мономере и совместимые с полимером. Замутнителями в производстве светорассеивающего О. с. служат полистирол и пигменты. Эфиры салициловой кислоты, производные бензотриазола, диоксобензофенона и т.п. являются светофильтрующими веществами, при использовании которых получают О. с., поглощающее ультрофиолетовое излучение. Сополимеризация метилметакрилата с другими акриловыми мономерами или стиролом, а также введение термостабилизирующих добавок позволяют получить О. с. с термостойкостью до 200ºС.

Полимеризация метилметакрилата сопровождается значительной усадкой реакционной массы (до 23%), что может привести к получению листов с дефектами. Поэтому процесс обычно проводят в два этапа: сначала получают полимер невысокой молекулярной массы (так называемый форполимер), представляющий собой сиропообразную жидкость, а затем его заливают в форму для получения листа; дальнейшая полимеризация форполимера сопровождается меньшей усадкой. Аналогичный эффект достигается, если полимеризации подвергают раствор ПММА в мономере (так называемый сироп-раствор). Полимеризацию мономера в один этап осуществляют только в тех случаях, когда необходимо получить полиметилметакрилатное О. с. очень высокой оптической прозрачности.

Полимеризацию проводят в формах, собранных из двух листов полированного силикатного стекла, стали или алюминия, скрепленных зажимами, с проложенными между ними эластичными прокладками из резины, пластика и пр. Толщина эластичных прокладок определяет будущую толщину листа О. с. Форму обычно оклеивают по краям плотной бумагой. Такое устройство формы обеспечивает возможность усадки в одном направлении – по толщине формы. Заполненные полимеризационной смесью формы герметически закрывают или заклеивают и помещают в камеры с циркулирующим теплым воздухом или в ванны с теплой водой.

Полимеризацию проводят в изотермических условиях. Нарушение изотермического режима может привести к перегреву формы, вскипанию мономера и так называемому «разгоранию», т.е. образованию пузырчатой массы. Поэтому чем толще лист, тем медленнее и при более низкой температуре проводят полимеризацию.

Если отвод тепла осуществлять неравномерно, то глубина полимеризации в различных частях формы будет различной. В результате в листе возникнут напряжения, приводящие после нагревания к его деформированию и, следовательно, ухудшению оптических свойств.

Температура процесса зависит от типа форполимера, концентрации инициатора и толщины формы. Обычно полимеризацию в формах проводят в течение 24 – 48 ч., а в толстых слоях (более 50 мм) – неделями при 20 – 50ºС до конверсии мономера свыше 90%. Процесс завершают при температурах, близких к температуре размягчения ПММА, так как при низких температурах диффузия непрореагировавшего мономера будет затруднена и поэтому даже за большой период времени невозможно полное превращение мономера.

По окончании полимеризации формы охлаждают до 50ºС и отделяют силикатные стекла от органического. Ориентацию осуществляют с помощью машин и прессов различной конструкции, равномерно растягивая (обычно на 50 – 70%) или сжимая заготовки, разогретые до температуры, на 10 – 120С превышающей температуру размягчения. Ориентированные листы охлаждают под нагрузкой.

В отдельных случаях листы О. с. получают методом фотополимеризации с использованием сенсибилизаторов, например бензоина. Заполненные формы облучают УФ-светом до образования геля, после чего осуществляют процесс по обычной схеме.

При получении литьевого О. с. из сополимера метилметакрилата с акрилонитрилом сополимеризацию осуществляют в массе по такой же технологии, как и в производстве полиметилметакрилатного стекла. Листы из ПММА, полистирола, поликарбоната, сополимеров винилхлорида и эфиров целлюлозы получают экструзией, а изделия сложной конфигурации – литьем под давлением гранулированных или порошкообразных полимеров, полученных обычными методами (в массе или суспензии).

Свойства. О. с. хорошо растворяется в метилметакрилате, ацетоне, дихлорэтане, бензоле и др., устойчиво к действию воды; обладает сравнительно невысокой плотностью и малой хрупкостью, что является существенным преимуществом перед силикатным стеклом. Однако температура размягчения О. с. значительно ниже силикатного стекла. Свойства некоторых О. с. представлены в табл. 3.12.

Полиметилметакрилатное стекло удовлетворительно переносит пребывание на воздухе в условиях 97%-ной влажности в течение 12 месяцев и старение в атмосферных условиях от 5 до 10лет и более.

Среди оптических свойств О. с. (полиметилметакрилатного, в частности) наиболее важны показатель преломления – 1,49, оптическая прозрачность (светопрозрачность) – не более 92% при условии, что рассеяние и поглощение света равны нулю, оптические искажения и фотоупругость. По оптической прозрачности О. с. делят на прозрачные в блоке и прозрачные только в пленках (тонких листах). К первой группе относятся полимеры и сополимеры метилметакрилата, полистирол, поликарбонат и другие полимеры, обладающие незначительным поглощением света; ко второй – О. с. на основе эфиров целлюлозы, литые эпоксидные и фенолоформальдегидные стекла.

Ненаполненные О. с. прозрачны для рентгеновского и γ – излучения, а в тонких листах – для α- и β-излучения.

Таблица 3.12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]