Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат по истории философии науки.docx
Скачиваний:
17
Добавлен:
06.06.2015
Размер:
5.73 Mб
Скачать

Новосибирский государственный университет

Факультет естественных наук

Кафедра философии

Реферат

История развития представлений о структуре и функциях рибосом

Выполнил: аспирант ФЕН НГУ Гопаненко А.В.

Руководитель: д.х.н., Карпова Г.Г.

Проверил: д.ф.н., Зуев В.В.

Новосибирск, 2014

Содержание:

Введение………………………………………………………………………… 3

Строение рибосом………………………………………………………….........5

История открытия рибосом…………………………………………………….6

История развития методов изучения рибосом………………………………..8

Заключение……………………………………………………………………….18

Список литературы……………………………………………………………..20

Введение

Более шестидесяти лет тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип строения дезоксирибонуклеиновой кислоты [1]. Структура ДНК пролила свет на механизм точного воспроизведения – удвоения генетического материала [2]. Произошло становление новой науки - молекулярной биологии. Была сформулирована так называемая центральная догма молекулярной биологии: ДНК  РНК  белок, смысл которой состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а через участие родственного биополимера - рибонуклеиновую кислоту (РНК), и этот путь от нуклеиновых кислот к белкам необратим. Таким образом, ДНК копируется по матрице ДНК, обеспечивая собственную репликацию, то есть воспроизведение исходного генетического материала в поколениях; РНК синтезируется по матрице ДНК, в результате чего происходит переписывание, или транскрипция, генетической информации в форму различных копий РНК; молекулы иРНК служат матрицами для синтеза белков - генетическая информация транслируется в форму полипептидных цепей.

Итак, важнейшим процессом жизнедеятельности всех организмов - от примитивных бактерий до человека, - является реализация генетической информации, закодированной в их ДНК. Завершающим этапом этого процесса является трансляция (биосинтез белков на рибосомах) – перевод последовательности нуклеотидов информационной (матричной) РНК-комплементарной копии ДНК, в последовательности аминокислотных остатков синтезируемых белков. Белки – биополимеры, ответственные практически за все биохимические реакции, происходящие в клетках живых организмов, - определяют большинство признаков организма, осуществляют регуляцию и координацию его жизнедеятельности. Трансляция осуществляется сложными клеточными надмолекулярными машинами – рибосомами. Именно они ответственны за сложный, многоэтапный процесс биосинтеза всех без исключения клеточных белков.

Изучение процесса трансляции началось в конце 50-х годов XX века и было неразрывно связано с изучением структуры рибосомы. Термин «рибосома» был введен в 1958 г. для описания рибонуклеопротеиновых частиц размером 10-20 нм, которые изначально были выделены в начале 40-х годов из надосадочной жидкости, полученной после центрифугирования гомогената, образованного при разрушении нормальных и опухолевых клеток эукариот. В начале 50-х годов было обнаружено, что именно на этих частицах осуществляется синтез белка у эукариот, тогда как для бактериальных клеток аналогичные данные удалось получить лишь в конце 50-х годов. С тех пор накоплено огромное количество информации о структуре рибосом – уникальных рибонуклеопротеинов, обладающих очень сложной структурой и состоящих из большой и малой субчастиц, каждая из которых содержит рибосомные РНК (рРНК) и несколько десятков белков. К концу ХХ века были установлены последовательности аминокислотных остатков всех рибосомных белков и последовательности нуклеотидов рРНК многих организмов от кишечной палочки до человека. Наиболее впечатляющие успехи в расшифровке структуры рибосом были достигнуты на рубеже XX и XXI столетий благодаря рентгеноструктурному анализу (РСА), который позволил установить строение рибосом бактерий с разрешением, позволяющим «видеть» отдельные нуклеотиды рРНК и аминокислотные остатки белков. До настоящего времени (2014 г.) рибосома является наиболее сложной клеточной структурой, строение которой расшифровано на уровне отдельных атомов. В 2009 г. трое ученых (В. Рамакришнан из Англии, Т. Стейц из США и А. Йонат из Израиля) получили Нобелевскую премию по химии за установление атомарной структуры бактериальных рибосом.

Строение рибосом

Чтобы читателю было легче воспринимать дальнейший материал, считаю необходимым привести краткую характеристику объекта, об истории открытия и изучения которого в дальнейшем пойдет речь. Итак, рибосомы – это клеточные органоиды (есть и у прокариот – одноклеточных организмов, у которых нет оформленного ядра, к которым относятся бактерии и археи, и у эукариот – настоящих ядерных – организмов, у которых в клетке есть ядро, к ним относятся как одноклеточные, так и многоклеточные представители царств грибов, растений и животных; эукариоты устроены гораздо сложнее, что влечёт за собой усложнение организации их клеточных структур, в связи с чем весьма затруднено их изучение), ответственные за биосинтез белка. Каждая рибосома состоит из двух субчастиц – большой и малой, которые в свою очередь, состоят из рибосомных РНК (рРНК) и нескольких десятков рибосомных белков. Агрегаты РНК и белков принято называть рибонуклеопротеинами. РНК в составе рибосом служит каркасом, к которому «нужным» образом присоединяются рибосомные белки, формируя две рибосомные субчастицы – большую и малую, которые собираясь вместе, образуют зрелую функционально активную рибосому. Работают эти органоиды в цитоплазме; у эукариот они могут находиться в свободном состоянии, либо могут быть инкорпорированы в состав эндоплазматического ретикулума-гранулярный ЭПС (у прокариот мембранных органоидов нет, поэтому все их рибосомы находятся в свободном состоянии в цитоплазме). Рибосомы осуществляют перевод последовательности нуклеотидов информационной РНК (иРНК) в последовательность аминокислот белка согласно правилам генетического кода. Аминокислоты для синтеза доставляются к рибосоме с помощью транспортных РНК (тРНК).

История открытия рибосом

История изучения строения рибосом насчитывает более полувека со времени их открытия, и краткое описание методов, использованных для этого, представляет отдельный интерес, поскольку эти методы используются или могут быть использованы для изучения не только рибосом, но и других сложных надмолекулярных комплексов.

Итак, к 1940 г. Альберт Клод (США) сумел выделить из эукариотических клеток цитоплазматические РНК-содержащие гранулы, гораздо меньшие, чем митохондрии и лизосомы (от 50 до 200 мкм в диаметре); позже он назвал их микросомами. Результаты химических анализов показали, что микросомы Клода были рибонуклеопротеидными комплексами. В дополнение к этому, цитохимические работы Т. Касперсона (Швеция) и Ж.Браше (Бельгия) продемонстрировали, что чем интенсивнее идет белковый синтез, тем больше обнаруживается РНК в цитоплазме.

В дальнейшем, некоторым исследователям удавалось выделять из клеток бактерий, животных и растений частицы, ещё более мелкие, чем микросомы. Электронная микроскопия и седиментационный анализ в ультрацентрифуге указывали, что частицы компактны, более или менее сферичны и гомогенны по размеру, имея диаметр 100-200 Ȧ (ангстрем) и обнаруживая резкие седиментационные границы с коэффициентами седиментации от 30-40S до 80-90S (S-коэффициент седиментации, или константа Сведберга, - отражает скорость осаждения каких-либо молекулярных комплексов при скоростном ультрацентрифугировании и зависит от молекулярного веса частиц и их плотности – компактности). Пожалуй, первое ясное свидетельство, что такие частицы бактерий являются рибонуклеопротеидами было получено Г.К. Шахманом, А.Б. Парди и Р. Станиером (США) в 1952 г.

Улучшенная техника микротомии и электронной микроскопии ультратонких срезов животных клеток привела к выявлению однородных плотных гранул с диаметром около 150 Ȧ непосредственно в клетке. Электронно-микроскопические исследования Дж. Паладе (США) [3], проведенные в 1953-1955 гг., показали, что маленькие плотные гранулы в изобилии содержатся в цитоплазме животных клеток. Они видны либо присоединенными к мембране эндоплазматического ретикулума, либо свободно рассеяны в цитоплазме. Микросомы Клода оказались фрагментами эндоплазматического ретикулума с сидящими на них гранулами. Выяснилось, что эти «гранулы Паладе» являются рибонуклеопротеидными частицами и что они представляют основную массу цитоплазматической РНК, обеспечивающей белковый синтез.

Исследования функциональной роли рибосом шли параллельно с их обнаружением и структурным описанием. Первой убедительной демонстрацией того, что именно рибонуклеопротеидные частицы микросом ответственны за включение аминокислот в новосинтезированный белок, были эксперименты П. Замечника с сотрудниками (США), опубликованные в 1955 г. За этим последовали эксперименты из этой же лаборатории, показавшие, что свободные рибосомы не прикрепленные к мембранам эндоплазматического ретикулума, также включают аминокислоты и синтезируют белок, освобождающийся затем в растворимую фазу. Функции бактериальных рибосом были предметом интенсивных исследований группы Р.Б. Робертса (США); публикация К. МакКиллена, Р.Б. Робертса и Р.Дж. Бриттена [4] в 1959 г. окончательно установила, что белки синтезируются в рибосомах и затем распределяются по другим частям бактериальной клетки.

История развития методов изучения рибосом