Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
23
Добавлен:
06.06.2015
Размер:
769.1 Кб
Скачать

37.Общая схема исследования функции и построения её графика

После того как мы обсудили многие аспекты поведения функции и способы их исследования, сформулируем общую схему исследования функции. Эта схема даст нам практический способ построения графика функции, отражающего основные черты её поведения.

Пусть дана функция . Для её исследования нужно:

1). Найти её область определения . Если это не слишком сложно, то полезно найти также область значений. (Однако, во многих случаях, вопрос нахожденияоткладывается до нахождения экстремумов функции.)

2). Выяснить общие свойства функции, которые помогут в определении её поведения: не является ли функция чётной либо нечётной (быть может, после сдвига влево или вправо по оси ), не является ли она периодической.

3). Выяснить, как ведёт себя функция при приближении аргумента к граничным точкам области определения, если такие граничные точки имеются. При этом могут обнаружиться вертикальные асимптоты. Если функция имеет такие точки разрыва, в которых она определена, то эти точки тоже проверить на наличие вертикальных асимптот функции.

39.

.

40. 40. Непосредственное интегрирование.

Несомненно, основным методом нахождения первообразной функции является непосредственное интегрирование с использованием таблицы первообразных и свойств неопределенного интеграла. Все другие методы используются лишь для приведения исходного интеграла к табличному виду.

Пример.

Найдите множество первообразных функции .

Решение.

Запишем функцию в виде .

Так как интеграл суммы функций равен сумме интегралов, то

Числовой коэффициент можно вынести за знак интеграла:

Первый из интегралов приведен к табличному виду, поэтому из таблицы первообразных для показательной функции имеем .

Для нахождения второго интеграла воспользуемся таблицей первообразных для степенной функциии правилом. То есть,.

Следовательно, где

41. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z:

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х:

Ответ:

При интегрировании функций с иррациональностью вида , гдеm, n, p – рациональные числа, важно правильно выбрать выражение для введения новой переменной. Смотрите рекомендации в разделе интегрирование иррациональных функций.

Очень часто метод подстановки используется при интегрировании тригонометрических функций. К примеру, использование универсальной тригонометрической подстановки позволяет преобразовать подынтегральное выражение к дробно рациональному виду.

Метод подстановки позволяет объяснить правило интегрирования .

Вводим новую переменную , тогда

Подставляем полученные выражения в исходный интеграл:

Если принять и вернуться к исходной переменнойх, то получим

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]