Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baranov.Introduction to Physics Of Ultra Cold Gases.pdf
Скачиваний:
20
Добавлен:
27.08.2013
Размер:
586.56 Кб
Скачать

2.3. WEAKLY INTERACTING BOSE GAS

25

2.3Weakly interacting Bose gas

If we consider a unit volume at T = 0 the HAMILTONian reads

ˆ

1

 

† †

 

 

H = åepapap +

 

 

g

å

ap3 ap4 ap2 ap1

:

(2.64)

 

 

 

p

2

~p1+~p2=~p3+~p4

 

 

 

Since ep e0 0 we cannot apply perturbation theory because we cannot guarantee g < ep e0. Explicit calculation show divergent terms already in second order. Our solution will also show the invalidity of perturbation theory (cf. (2.111)).

We note that almost all particles are in the ground state, i.e.

apap

n0

8p 6= 0

(2.65)

a0a0

= n0 1

(2.66)

a0a0

= 1 + n0 1:

(2.67)

 

|

 

 

 

}

 

 

{zn0

 

This leads to the simplification a0;a0 pn0 1. Taking leading terms in n0, we can write (2.64) in the form

ˆ

 

1

2

 

1

 

 

 

 

 

H =

åp

epapap +

 

gn0

+

 

 

~p6=0 n

apa

 

p + a

 

 

o

(2.68)

2

2

 

 

 

 

gn0

å

 

 

pap + 4apap :

The remaining momenta have to be equal in the last sum because of conservation

of total momentum.

 

 

 

 

 

 

 

 

 

Remembering that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0 = n ånp

 

 

 

 

(2.69)

 

 

 

 

 

 

 

p

 

 

 

 

 

we can rewrite (2.68) with the considered accuracy as

 

 

 

 

ˆ

1 2

1

~p6=0 n

 

 

o

H =

 

gn

p6=0

 

 

2apap + a

 

pap + apa

 

p

2

2

 

+ å epapap +

 

gn å

 

 

(2.70)

!

 

 

˜ ˜

 

 

 

 

 

 

 

 

(2.71)

= E0 +

å wpapap

 

 

 

 

 

 

 

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

which is a HAMILTONoperator for quasi particles in a harmonic potential. To find the relation between these quasi-particles and our original (or base) operators we assume according to BOGOLYUBOV

a˜ p = upap + vpa

p

up = up

up = u p

(2.72)

a˜ p = upap + vpa p

vp = vp

vp = v p

(2.73)

26

CHAPTER 2. BOSONS

and require them to obey the BOSE commutators:

ha˜ p;a˜ p0i = ha˜ p;a˜ p0i = 0

 

 

ha˜ p;a˜ p0i = dpp0

 

(2.74)

Using this we get

hap;ap0i+upvp0

hap;a p0i

 

 

ha˜ p;a˜ p0i = upup0

 

 

 

|

 

 

 

 

}

 

 

 

 

|

 

{z0

 

 

 

}

 

 

 

 

 

 

d{zpp0

 

 

 

 

 

 

 

+ vpvp0

ha p;ap0i

+vpvp0

ha p;a p0i

(2.75)

 

 

 

|

 

 

 

{z0

 

 

 

 

 

|

 

 

 

{zdp

 

}

 

 

2

 

2

 

 

2}

 

2

 

 

 

 

p0

(2.76)

= dpp0(up vp) ) up vp = 1:

 

 

 

 

 

This equation is solved if we set

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

up = cosh(fp)

 

 

 

 

vp = sinh(fp):

 

(2.77)

The inverse relations are then given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

(2.78)

ap = upap

vpa p

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

(2.79)

ap = upap

vpa p:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we now define ep = ep +gn and insert (2.78) and (2.79) into the HAMILTONian

(2.70) we get

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

1

 

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H =

 

 

 

gn + å

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

apa

p + a

 

 

pap

 

 

 

 

 

 

(2.80)

 

 

 

 

 

epapap + gn

 

 

 

 

 

 

 

 

 

 

1

 

2

 

 

 

 

 

˜

 

 

 

2 ˜ ˜

 

 

 

2

˜

 

 

˜

 

 

 

 

 

 

˜ ˜

 

 

˜

 

˜

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

p6=0 n h

 

 

 

 

 

 

 

 

 

 

 

pa

p

 

 

 

 

 

p + a

i

 

 

 

gn +

å

 

 

ep upapap + vpa

 

 

 

upvp apa

 

 

pap

 

 

 

 

+

1

gnhu2pa˜ pa˜ 2p +v2pa˜ pa˜ p vpup a˜ pa˜ p +a˜ pa˜

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

1

+ upa˜ pa˜ p + vpa˜ pa˜ p upvp a˜ pa˜ p + a˜ pa˜ p io

 

(2.81)

 

 

 

 

 

2

 

 

 

 

˜

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

gn

 

 

 

epvp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

å

 

 

 

gnvpup

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

{z

 

 

 

 

 

 

 

}

 

 

 

 

p p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

å p p

p

p

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p6=0

˜ ˜

 

 

 

˜

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

a a

 

 

 

 

u + v

 

 

2gnu v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

˜

 

 

 

˜

 

˜

 

 

 

 

 

˜

 

 

 

 

1

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ å apa

 

p + a

 

pap

 

 

 

epupvp +

=0

 

 

 

 

 

 

(2.82)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

{z

 

 

}

 

 

 

2.3. WEAKLY INTERACTING BOSE GAS

27

Thus fp has to be chosen such that

 

 

 

 

 

 

2

2

˜

(2.83)

gn(up

+ vp)

2epupvp = 0:

The simples way to find the angle

f from this equation is to use the relation

4u2pv2p = (u2p + v2p)2 (u2p v2p)2:

(2.84)

 

 

|

 

{z

 

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=1

 

 

 

 

We get as the result

u2p

= 2 wp + 1

v2p = 2

wp 1

 

 

 

 

 

 

 

 

 

1

 

 

 

˜

 

 

1

 

˜

 

 

 

 

 

 

 

 

 

 

 

ep

 

 

 

 

ep

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

˜

2

 

 

2

 

˜

= ep + gn

 

 

 

 

wp

= ep (gn)

 

ep

 

 

 

with the HAMILTONian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

1

 

 

2

 

 

1

 

 

 

˜

 

 

 

˜

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H =

2 gn +

2

 

 

 

 

 

 

 

with

 

å (wp ep) + å wpapap

2

 

 

 

 

 

 

 

 

 

p6=0

 

 

p6=0

 

 

 

 

 

˜ 2

 

 

 

 

 

 

2

 

˜

 

˜

 

 

 

 

 

 

 

wp = ep (gn) = (ep

gn)(ep + gn) = ep(ep + 2gn)

 

p2

 

p2

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

+ 2gn :

 

 

 

 

 

 

 

 

2m

2m

 

 

 

 

 

 

 

 

For p ! 0 we have w p.

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

Figure 2.2: wp as function of p

 

More precisely, if we define 3

 

 

 

 

pc2 = mgn

v2 =

gn

 

(2.90)

m

 

 

 

3In this context we assume n n0

28

 

 

 

 

 

 

CHAPTER 2. BOSONS

we get

( p2

 

 

pc:

 

wp =

+ gn

p

(2.91)

 

vp

 

p

pc

 

 

 

 

 

 

 

 

 

 

 

2m

 

 

 

Reconsidering the requirement for superfluidity (2.30) we get

 

c =

p

wp

=

 

6=

 

:

 

 

p

 

 

 

v

 

min

 

 

v

 

0

 

(2.92)

If p pc i.e.

 

 

 

 

 

 

 

 

 

wp =

pc

 

 

 

for p pc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

we get

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8(gn0)2

 

 

 

 

 

 

 

 

 

wp e˜ p =

 

 

 

˜

=

 

 

 

˜

 

 

 

2 m

 

 

 

 

 

 

 

2

 

˜ 2

 

 

 

 

2

 

 

<

(gn0)2

= gn

0

 

 

p

 

 

p

c

 

 

 

wp

 

ep

 

 

 

(gn0)

 

 

gn0

 

 

 

 

 

 

 

 

 

wp + ep

 

 

wp + ep

 

 

= (gn0)

 

p pc

 

 

 

 

 

2ep

p2

 

 

E0 =

1

 

2

 

1

 

2

åp p2

 

:

 

0

 

gn0

2

p2 )

 

 

2 gn0

2

(gn0)

2 åp (wp + e˜ p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

1

 

 

(gn )2

 

 

 

 

m

 

()

 

1

 

 

m

 

(gn

)2

1

 

m

 

=

 

n02

g g2 åp

 

 

0

 

åp

 

 

 

 

2

p2

2

 

wp + e˜ p

p2

|{z }

 

 

 

independent of n

 

 

 

 

1

 

 

(gn

)2

1

 

m

 

=

 

n02

Γ

0

 

åp

 

 

 

:

2

2

 

wp + e˜ p

p2

Here Γ is the quantum mechanical scattering amplitude defined by

Γ = g g å m Γ and

p p2

Γ = 4p~2 a: m

The solution is solved iteratively:

Γ = g g2 å m + :::

p p2

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

2.3. WEAKLY INTERACTING BOSE GAS

29

The sum (2.97) is convergent with the dominant contribution coming from p pc. Looking at each term of E0 we get

1

 

 

Z

d p3

1

 

 

 

 

1

 

Z

1

 

p3

 

påpc

 

 

 

 

 

 

 

 

 

 

 

d3 p

 

 

c

(2.101)

wp + e˜ p

(2p~)3

wp + ep

~3

gn0

gn0~3

 

 

mpc

 

 

 

 

 

 

 

 

 

p

 

pc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.102)

 

 

 

 

~3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

m

Z

d3 p

 

p

 

 

 

 

 

 

 

 

 

 

 

 

påpc

 

 

 

 

 

 

m c

:

 

 

 

 

 

 

(2.103)

 

p2

~3

p2

~3

 

 

 

 

 

 

 

 

 

 

p/pc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this the second term of (2.97) for E0 can be estimated (up to some numerical

˜

constant C resp. C, c.f. (2.106)) as

 

2p~2

2

 

1

(gn0)

2 mpc

(2.104)

E0

 

an0

C

 

 

 

m

2

~3

 

2

2

 

 

 

 

 

 

 

 

 

=

2p~ an0

 

1 C˜ qa3n0

:

(2.105)

m

q

Here a3n0 is our old small parameter (cf. (1.1) with a r0). The exact calculation leads to

E0 =

m~

2

an2

"1 +

15

r

 

 

 

#:

(2.106)

 

p

 

2p

 

 

128

 

 

a3n

 

 

 

Note, that the equation contains n, not n0.

Lastly the number of particles outside the condensate (i.e. p 6= 0) in the ground state considering a˜ pj0i = 0 is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

˜ 2

2

 

 

 

a

a

 

=

 

 

 

v2

=

 

 

 

 

e˜ p wp

=

 

 

 

 

 

ep

wp

 

(2.107)

h å

pi

å

 

 

å

 

 

 

 

 

 

å wp(e˜ p + wp)

p

 

 

 

 

p

2

 

wp

2

 

p6=0

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

 

 

 

 

(gn)2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

(gn)2

 

 

 

1

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

å

 

 

 

 

 

 

 

 

 

 

 

 

 

 

å

 

 

(2.108)

 

 

 

 

2

 

 

 

 

wp(e˜ p + wp)

 

 

 

2

 

 

vpgn

 

 

 

 

 

 

 

 

 

 

 

 

p6=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p/pc

 

 

 

 

 

 

 

 

 

 

1 pc3

1

 

 

1 pc2

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

with

(2.109)

 

 

 

 

gn

 

 

 

 

 

 

 

gn

 

 

 

n na

 

 

 

 

 

 

v

(2p~)3

pc

v

~3

 

 

 

 

 

g =

 

4p~2a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.110)

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

3

This result ( a 2 is not possible by perturbation because in perturbation only integer powers of the interaction constant are possible).

30

 

 

 

CHAPTER 2. BOSONS

By exact calculations we get

 

 

 

 

 

håapapi =

3 nr

 

= n0 n

with

(2.111)

p

 

8 na3

 

 

 

a r0 n 31

:

 

(2.112)

Using the definition of g (1.83) we calculate the chemical potential in leading order using (2.105) or (2.106)

m =

E0

 

E0

= gn0

ng > 0

(2.113)

n

 

n0

 

because (cf. (2.69))

 

 

 

 

 

 

 

 

n0 = n

1

3 r

 

! n:

(2.114)

p

 

 

 

 

 

8

 

na3

 

 

This is valid for the ground state at T = 0 and no excitations present.

Figure 2.3: Energy spectra in BOSE condensates. If in the free case e m would become zero n¯ (2.4) cannot be fixed. If a repulsive interaction is present, the average number of particles can be fixed because Eint an2

2.4Mean field approximation

Again we note, that

apap ! np + 1 1 and

(2.115)

apap ! np 1:

(2.116)

2.4. MEAN FIELD APPROXIMATION

31

If we are interested only in quantities proportional to n, we can neglect [ap;ap] = 1. Our theory then becomes a classical field description:

ˆ

 

 

 

iΦ(r)

 

 

p

with

(2.118)

yy = n(r):

 

y(~r) ! y(r) =

n(r)e

 

(2.117)

This works only if the classical field is slowly varying or by using F OURIERtransformation the momenta are small (slow motion). The reason behind this is, that n and Φ behave similar to p and x in ordinary space. The wave function can always be multiplied with a phase without changing the physics:

yn (~r) ! eif yn (~r)

single particle

(2.119)

Ψ(~r1;:::;~rN ) ! eiNf Ψ(~r1;:::;~rN )

(2.120)

ˆ

 

ˆ

= f which leads to

 

 

This implies the operators N = i

¶f and f

 

 

fˆ ;Nˆ = i

 

)

4N4f 1:

(2.121)

But in a sufficiently large volume

 

V one may have N 1 (but still

N

1).

 

N¯

Therefor, it follows from (2.121), that in this case f 1. As a result, for such a

¯

¯

are well defined quantities. By dividing our system into blocks

volume N and f

with volume

V

¯

¯

, we can define N and f for each block and these quantities vary

slowly from block to block.

If we consider the thermodynamic limit, i.e. N ! ∞ while VN remains fixed we get

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

ˆ

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hN 1jy(~r)jNi = y(~r)

 

and i~t y

= [H;y]

 

 

lim N

 

1

j(

 

ˆ

 

 

 

ˆ

 

ˆ

 

 

 

 

 

 

 

 

i

 

H ˆ

 

H

 

 

N

 

 

 

 

 

) ~t y =

:::

h

 

 

 

 

 

 

y y

 

 

 

)j i

 

 

 

 

=

lim N

 

1

j(

E N

 

1

 

 

ˆ

 

 

ˆ

E N

N

:::

h

 

 

 

 

 

 

(

 

 

)y

y

 

(

))j i

=

:::

(

 

 

(

 

1

)

(

 

 

))h

N

 

1

jyj i

 

 

 

lim

E N

 

 

 

 

 

E N

 

 

 

 

 

 

ˆ

N

 

 

 

 

 

|

 

 

 

 

 

 

{z

 

 

 

 

 

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=: m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.122)

(2.123)

(2.124)

(2.125)

= my:

(2.126)

This differential equation can be solved by

y(~r;t) = e i

mt

y(~r):

(2.127)

~

ˆ ˆ 0 = ˆ If we replace H by H H

m we absorb this trivial phase in our HAMILTONian.

32

 

 

 

 

 

 

CHAPTER 2. BOSONS

This leads to4 the GROSS-PITAJEWSKI equation (GP):

 

i~

y =

~2

 

4y + (gjyj

2

m)y

(2.128)

t

2m

 

Here jyj2 = n n0. Therefore we will not distinguish between n and n0.

If we are looking for a stationary, homogeneous solution, then all derivatives (in GP) become zero and if y 6= 0 we find

m = gn:

(2.129)

Setting the possible phase to 0, we can describe small fluctuations around the ground state by a wave function

y = p

 

+ dy(~r;t):

(2.130)

n0

Substituting this wave function into the GP (2.128), taking only terms up to linear order in dy and using (2.129) we get

i

 

dy =

 

~2

 

dy + gn

 

(dy + dy ):

(2.131)

 

 

2m

 

 

 

~t

 

 

 

4

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

To solve this, we make the ansatz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dy(~r;t) = A exp(i(

~p ~r

 

 

wt)) + B exp( i(

~p ~r

 

 

wt))

(2.132)

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

and insert it into (2.131):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~wA = (ep + gn0)A + gn0B

 

 

 

 

 

(2.133)

 

 

 

 

~wB = (ep + gn0)B + gn0A

 

 

 

 

(2.134)

Solving this for w we get wp =

 

˜ 2

(gn0)

2

 

 

˜

 

= ep + gn0

again.

ep

 

and ep

Calculating the expectation

value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

qand remembering (2.129) we get a functional

for y:

d3r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Efyg = Z

 

2

 

 

 

 

 

 

 

 

2 gjyj4 mjyj2

 

 

 

 

(2.135)

2~m jÑyj2 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

~2

 

 

 

 

 

 

 

 

1

 

2

 

 

 

2

 

1

 

2

 

= Z

d

r

 

jÑyj2 +

 

g jyj

 

n0

 

 

 

 

 

gn0

(2.136)

2m

2

 

 

2

Since the functional does not depend on a space independent F, i.e. Efyg = EfeiΦyg we can choose a phase. For the previous calculations F = 0. Once the phase is chosen, the symmetry is broken, because

y0 6= eiΦy0

(2.137)

If F is a slowly varying function, then the functional will not change much.

4not shown here

2.4. MEAN FIELD APPROXIMATION

33

Theorem 1 (Goldstone) If a global continuous symmetry is spontaneously broken (the ground state is not invariant under symmetry operations) then there exists

p!0

a soft mode, i.e. a wp with wp ! 0.

We have such a situation. If p ! 0 then ep ! 0 and therefore wp ! 0. This leads (2.131) to B = A and a purely imaginary change in the phase:

dy = Aei() A e i()

(2.138)

= iep

 

 

F(~r;t) and (2.130) becomes

(2.139)

n0

y(~r;t) = p

 

+ iep

 

F(~r;t) p

 

eieΦ

(2.140)

n0

n0

n0

If we substitute this solution into the definition of the probability flow (=superfluid flow) we get

~j = n~vs =

i~

(y (Ñy) (Ñy )y)

(2.141)

2m

~

 

 

 

 

 

 

 

 

ÑF

 

with y(~r;t) = pn(~r;t)eiΦ(~r;t):

 

= n

 

 

(2.142)

m

 

Here ~vs is the velocity of the superfluid flow. It is a potential flow:

 

 

 

 

 

~

~

 

 

 

 

 

 

 

~vs =

 

ÑF

(2.143)

 

 

 

 

 

 

 

 

 

m

 

 

 

 

therefore the rotation Ñ ~vs = 0. If we compare this to solid body rotation with

~

(2.144)

~vSB = W ~r we get

~

(2.145)

Ñ ~vSB = 2W 6= 0:

Therefore the fluid must stay at rest even if the vessel is rotated. On the other hand

and thus rotation must occur To solve this we keep Ñ ~vs

Calculating

Erot = E M~ ~W

(2.146)

(M becomes nonzero) if W is large enough.

 

= 0 everywhere except for a line where

 

yjline = 0:

(2.147)

I ~vs dl~

~

I

~

~

 

 

= const = 2pG =

 

ÑFdl~ =

 

dF =

 

2p k:

(2.148)

m

m

m

34

CHAPTER 2. BOSONS

Figure 2.4: Top view on rotating superfluid liquid

Here Γ is the vorticity or circulation and k 2 Z the circulation quantum number.

~

 

 

 

 

 

With ~vs ~ef and dl =~ef r df we get for the critical velocity

 

vs =

~

 

k

:

(2.149)

 

 

m r

 

This expression becomes infinite for r ! 0 (while being nice for r ! ∞) therefore superfluidity has to break down at some distance r x with

vs = vc = m

= m pmgn0

= r

 

m0

:

(2.150)

 

 

pc

 

 

1

 

 

 

 

 

 

 

 

gn

 

 

For k = 1 we get

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

~

 

 

 

 

~

 

 

 

 

 

 

 

x

 

=

 

=

 

 

 

:

 

 

 

 

(2.151)

mvc

pc

p

 

 

 

 

 

 

mgn0

 

 

 

 

By using (2.151), (1.83) and (1.1) we get for a number of particles in a volume x3 the macroscopic value

nx3

 

1

 

1

 

1:

(2.152)

2

 

2

 

 

 

1

 

~

 

pan 3

 

 

 

and therefore, the length x is much larger than the average interparticle distance. If L is the length of one vortex, we now get for the energy of the vortex

E(k)

 

1

 

 

2

 

1

 

 

~k

 

 

2

 

d2r

 

 

 

=

 

Z d2r rvs

=

 

nm

 

 

 

 

Z

 

 

 

 

L

2

2

m

 

r2

 

 

 

= pnm

~k

 

2

Zx

R dr

 

 

~2

k2 ln

R

 

 

 

 

 

 

 

 

 

= pn

 

 

 

 

m

 

 

 

r

m

x

and for the angular momentum

M(k)

= Z

~

k2p Zx

R

 

 

d2r rvsr = mn

 

dr r pn~kR2:

L

m

(2.153)

(2.154)

(2.155)

2.4. MEAN FIELD APPROXIMATION

35

Figure 2.5: Radial part f (r) of the wave function in superfluid B OSE gas

Conclusions:

If M is fixed then we either have k repeated vortices or one vortex with circulation k5. Since kE(1) < E(k) it is energetically favorable to have vortices with k = 1 only.

The critical velocity, when at least one vortex exists, is with

 

~ ~

!

 

 

 

 

(2.156)

Erot = E (M ΩC) = 0

 

:

ΩC

= M(1) = mR2 ln

x

(2.157)

 

 

E(1)

~

 

 

R

 

 

ΩC is very small, usually Ω ΩC and many vortices exist. They repel each other and a lattice is created where phonons can be observed.

Figure 2.6: Many vortices in superfluid B OSE gas

5or a proper combination of both

Соседние файлы в предмете Физика конденсированного тела