Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baranov.Introduction to Physics Of Ultra Cold Gases.pdf
Скачиваний:
20
Добавлен:
27.08.2013
Размер:
586.56 Кб
Скачать

68 CHAPTER 3. FERMIONS

3.4.1 Zero Sound

Using a semi-classical approach we can describe small density fluctuations

dn j

n around the ground state (equilibrium) as

 

 

 

 

 

n j(~p;~r;t) = n j(~p) + dn j(~p;~r;t):

 

(3.178)

The kinetic equation for n j(~p;~r;t) reads

 

 

 

n j

+~vÑrn j + ( Ñrej)Ñ~pn j

= Icoll

! 0

(3.179)

 

 

 

t

where the collisional term vanishes for T ! 0 because t T 2 ! ¥ which corresponds to the so called collisionless regime, wt 1, where w is a characteristic frequency. Therefore the kinetic equation in this regime is

n j

+~vÑrn j ÑrejÑ~pn j = 0:

(3.180)

t

The first two terms describe the ballistic motion of particles while the last term acts as a non trivial collective force. This equation has to be solved self-consistently because small fluctuations of density generates the force which in turn changes the density and so on. But first we want to rewrite the equation

Ñrej

= Ñr

0e(p) + å f~p j~p 0 j0dn~p

0 j0

1

= å f~p j~p 0 j0Ñrdn~p 0 j0

 

 

@

~p 0 j0

 

A

~p 0 j0

 

¶dn

 

 

 

 

 

 

 

 

 

 

 

 

 

j

+~vÑrdn j å f~p j~p 0 j0( d(p pF))(~eÑr)dn~p 0 j0 = 0

 

 

t

¶dn

 

 

 

~p 0 j0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~p j

+~vÑrdn~p j + d(p pF) å fpF~e j~p 0 j0 (~eÑr)dn~p 0 j0 = 0:

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~p 0 j0

 

Here we used

 

 

 

 

 

 

 

 

 

 

 

 

 

n(p)

 

n ¶e

1

d

 

= ~ed(p pF):

 

 

 

 

 

=

 

 

 

 

=

 

(p pF)~vF

 

 

 

¶~p

¶e

¶~p

vF

To solve this, we choose the ansatz

(~ )

dn~p j = d(p pF)c(~e)ei k ~r wt :

(3.181)

(3.182)

(3.183)

(3.184)

(3.185)

3.4. LANDAU-FERMI-LIQUID

Inserting this into (3.183) we get

 

 

~

 

 

0 = ( iw + ik ~v)c(~e) +

 

~på0 j0

fpF~e j~p 0 j0i ~e ~k d(p pF)c(~e 0)

(w kvF)c(~e) =~k ~e å fpF~e j~p 0 j0d(p pF)c(~e 0)

~p 0 j0

 

 

 

v j0(m)vF Z

dΩ

 

=~k ~e åj0

0

c(~e 0) fpF~e j pF~e 0 j0

4p

69

(3.186)

(3.187)

(3.188)

=~k ~e Z

dΩ

 

 

 

 

0

 

F(~e ~e 0)c(~e 0)vF

4p

c(~e) = w

 

~

 

 

 

 

4p0

F(~e ~e 0)c(~e 0):

v

FvF~k ~e Z

 

 

k

~e

 

 

 

dΩ

 

 

 

 

 

 

 

 

 

 

This is difficult to solve. We assume the simplest case, i.e.

F(~e ~e 0) = F0

and consider all further deviations as higher order terms. This leads to

(3.189)

(3.190)

(3.191)

c(~e) = w

 

~

 

 

 

4p0

c(~e 0)

(3.192)

v

FvF~k ~e F0 Z

 

 

k

~e

 

 

dΩ

 

 

 

 

 

 

 

 

 

 

~ ~

= ~c vFk e : (3.193)

~ ~ w vFk e

If we define (3.192) over

w = vFks with s =const and z = cos(~k ~e 0) and integrate both sides of

 

dΩ

we get

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 = F0 Z

dΩ

~

 

 

~e

 

 

 

 

 

 

 

 

 

 

 

v k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

~e

 

 

 

 

 

(3.194)

 

 

 

4p

w vF~k

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

dz

 

 

z

 

=

F

 

 

s

(3.195)

 

 

= F0 Z 1

2

 

s z

 

2

Z 1 dz

1 z s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

2

 

s + 1

 

 

 

 

 

 

 

= F

 

 

 

1

 

 

 

s

ln

 

 

(s

 

1)

 

 

 

 

(3.196)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

+ 1 =

s

1

+ s

 

 

,

 

 

ln

 

 

 

:

(3.197)

F0

2

j1

sj

If 0 < F0 1 the left side became huge therefore s has to be close to 1:

s = 1 + e e 1

(3.198)

Соседние файлы в предмете Физика конденсированного тела