Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mark International Macroeconomics and Finance Theory and Empirical Methods.pdf
Скачиваний:
86
Добавлен:
22.08.2013
Размер:
2.29 Mб
Скачать

5.2. CALIBRATING A TWO-COUNTRY MODEL

149

0.05

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

-0.05

GDP (broken)

 

 

Consumption

 

 

 

 

 

 

 

 

 

 

 

 

-0.1

 

 

 

 

 

 

 

 

 

 

 

-0.15

 

 

 

 

Investment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.2

 

 

 

 

 

 

 

 

 

 

 

73

75

77

79

81

83

85

87

89

91

93

95

Figure 5.3: Hodrick-Prescott Þltered cyclical observations from the model. Investment has been shifted down by 0.10 for visual clarity.

This coarse overview of the one sector real business cycle model shows that there are some aspects of the data that the model does not explain. This is not surprising. Perhaps it is more surprising is how well it actually does in generating ‘realistic’ time series dynamics of the data. In any event, this perfect markets—no nominal rigidities ArrowDebreu model serves as a useful benchmark against which reÞnements can be judged.

5.2Calibrating a Two-Country Model

We now add a second country. This two-country model is a special case of Backus et. al. [5]. Each county produces the same good so we will not be able to study terms of trade or real exchange rate issues. The presence of country-speciÞc idiosyncratic shocks give an incentive to individuals in the two countries to trade as a means to insure each

150 CHAPTER 5. INTERNATIONAL REAL BUSINESS CYCLES

Table 5.2: Calibrated Closed-Economy Model

 

 

 

 

 

Std.

 

 

 

 

 

Autocorrelations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dev.

 

 

1

 

 

2

 

 

3

 

 

4

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yt

 

0.022

 

0.90

 

0.79

 

0.67

 

0.53

 

0.23

 

 

 

ct

 

0.023

 

0.97

 

0.89

 

0.77

 

0.63

 

0.31

 

 

 

it

 

0.034

 

0.70

 

0.50

 

0.36

 

0.19

 

-0.04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross correlation with yt−k at k

 

 

 

 

 

 

6

 

4

 

 

1

 

 

0

 

-1

 

 

-4

 

-6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ct

 

0.49

0.77

 

0.96

 

0.90

 

0.79

 

0.33

0.04

 

it

 

0.29

0.11

 

0.41

 

0.74

 

0.73

 

0.61

0.44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other against a bad relative technology shock so we can examine the behavior of the current account.

Measurement

We will call the Þrst country the ‘US,’ and second country ‘Europe.’ The data for European output, government spending, investment, and consumption are the aggregate of observations for the UK, France, Germany, and Italy. The aggregate of their current account balances suffer from double counting and does not make sense because of intraEuropean trade. Therefore, we examine only the US current account, which is measured as a fraction of real GDP.

Table 5.3 displays the features of the data that we will attempt to explain–their volatility, persistence (characterized by their autocorrelations) and their co-movements (characterized by cross correlations). Notice that US and European consumption correlation is lower than the their output correlation.

The Two-Country Model

Both countries experience identical rates of depreciation of physical capital, long-run technological growth Xt+1/Xt = Xt+1/Xt = γ, have

5.2. CALIBRATING A TWO-COUNTRY MODEL

151

 

 

 

Table 5.3: Open-Economy Measurements

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Std.

 

 

 

 

Autocorrelations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dev.

 

1

 

 

2

 

 

3

 

 

4

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ext

0.01

 

 

0.61

 

0.50

 

0.40

 

0.40

 

0.12

 

 

 

 

 

 

 

 

yt

0.014

 

0.84

 

0.62

0.36

0.15

-0.15

 

 

 

 

 

 

 

ct

0.010

 

0.68

 

0.47

0.30

0.04

-0.15

 

 

 

 

 

 

 

it

0.030

 

0.89

 

0.75

 

0.57

 

0.40

 

0.07

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross correlations at lag k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

4

 

1

 

0

 

-1

 

-4

 

6

 

 

 

ytext−k

 

0.43

 

0.42

 

0.41

 

0.41

 

0.37

 

0.03

 

0.32

 

 

 

ytyt−k

 

0.28

 

0.22

 

0.21

 

0.36

 

0.43

 

0.36

 

0.22

 

 

 

ctct−k

 

0.26

 

0.39

 

0.28

 

0.25

 

0.05

 

0.15

 

0.26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: ext is US net exports divided by GDP. Foreign country aggregates data from France, Germany, Italy, and the UK. All variables are real per capita from 1973.1 to 1996.4 and have been passed through the Hodrick—Prescott Þlter with λ = 1600.

the same capital shares and Cobb-Douglas form of the production function, and identical utility. Let the social planner attach a weight of ω to the domestic agent and a weight of 1 −ω to the foreign agent. In terms of e ciency units, the social planner’s problem is now to maximize

 

 

 

 

jX

 

 

 

 

Et βj[ωU(ct+j) + (1 − ω)U(ct+j)],

(5.27)

=0

 

 

 

 

subject to,

 

 

 

 

yt

=

f(At, kt) = Atktα,

(5.28)

yt

=

f(At , kt ) = At kt α,

(5.29)

γkt+1

=

it + (1 − δ)kt,

(5.30)

γkt+1

=

it + (1 − δ)kt ,

(5.31)

yt + y

= ct + c

+ (it + i ).

(5.32)

t

 

t

t

 

In the market economy interpretation, we can view ω to indicate the size of the home country in the world economy. (5.28) and (5.29) are the

152 CHAPTER 5. INTERNATIONAL REAL BUSINESS CYCLES

Cobb—Douglas production functions for the home and foreign counties, with normalized labor input N = N = 1. (5.30) and (5.31) are the domestic and foreign capital accumulation equations, and (5.31) is the new form of the resource constraint. Both countries have the same technology but are subject to heterogeneous transient shocks to total productivity according to

" At

# = "

1

ρ

δ

# +

" δ

ρ # "

At−1

# +

" ²t

# ,

(5.33)

A

 

 

1

 

ρ

δ

 

ρ

δ

A

 

²

 

 

t

 

 

 

 

 

 

 

t−1

 

t

 

 

where (²t, ²t )0

iid

 

 

 

 

 

 

 

 

 

 

 

= Σ22 =

N(0, Σ). We set ρ = 0.906, δ = 0.088, Σ11

2.40e−4, and Σ12 = Σ21 = 6.17e−5. The contemporaneous correlation of the innovations is 0.26.

Apart from the objective function, the main di erence between the two-county and one-country models is the resource constraint (5.32). World output can either be consumed or saved but a country’s net sav-

ing,

which

is

the

current

account balance, can be non—zero

(y

t

c

i

t

=

(y

c

i ) = 0).

 

t

 

 

t

t

t

6

 

Let λt

= (kt+1, kt+1, kt, kt , At, At , ct ) be the state vector, and indi-

cate the dependence of consumption on the state by ct = g(λt), and

ct = h(λt) (which equals ct trivially).

Substitute (5.28)—(5.31) into

(5.32) and re-arrange to get

 

ct

=

g(λt) = f(At, kt) + f(At , kt ) − γ(kt+1 + kt+1),

 

 

+(1 − δ)(kt + kt ) − ct

(5.34)

ct

=

h(λt) = ct .

(5.35)

For future reference, the derivatives of g and h are,

g1 = g2 = −γ,

g3 = fk(A, k) + (1 − δ), g4 = fk(A , k ) + (1 − δ),

g5 = f(A, k)/A, g6 = f(A , k )/A ,

g7 = −1,

h1 = h2 = · · · = h6 = 0, h7 = 1.

5.2. CALIBRATING A TWO-COUNTRY MODEL

153

Next, transform the constrained optimization problem into an unconstrained problem by substituting (5.34) and (5.35) into (5.27). The problem is now to maximize

ωEt ³u[g(λt)] + βU[g(λt+1)] + β2U[g(λt+2)] + · · ·´

(5.36)

+(1 − ω)Et ³u[h(λt)] + βU[h(λt+1)] + β2U[h(λt+2)] + · · ·´ .

 

At date t, the choice variables available to the planner are kt+1, kt+1, and ct . Di erentiating (5.36) with respect to these variables and rearranging results in the Euler equations

γUc(ct)

= βEtUc(ct+1)[g3(λt+1)],

(5.37)

γUc(ct)

=

βEtUc(ct+1)[g4(λt+1)],

(5.38)

Uc(ct)

=

[(1 − ω)/ω]Uc(ct ).

(5.39)

(5.39) is the Pareto—Optimal risk sharing rule which sets home marginal utility proportional to foreign marginal utility. Under log utility, home and foreign per capita consumption are perfectly correlated, ct = [ω/(1 − ω)]ct .

The Two-Country Steady State

From (5.37) and (5.38) we obtain y/k = y /k = (γ/β+δ−1)/α. We’ve already determined that c = [ω/(1 − ω)]c = ωcw where cw = c + c is world consumption. From the production functions (5.28)—(5.29) we get k = (y/k)1/(α−1) and k = (y /k )1/(α−1). From (5.30)—(5.31) we get i = i = (γ + δ − 1)k. It follows that c = ωcw = ω[y + y −(i + i )] = 2ω[y − i].

Thus y − c − i = (1 − 2ω)(y − i) and unless ω = 1/2, the current account will not be balanced in the steady state. If ω > 1/2 the home country spends in excess of GDP and runs a current account deÞcit. How can this be? In the market (competitive equilibrium) interpretation, the excess absorption is Þnanced by interest income earned on past lending to the foreign country. Foreigners need to produce in excess of their consumption and investment to service the debt. In a sense, they have ‘over-invested’ in physical capital.

In the planning problem, the social planner simply takes away some of the foreign output and gives it to domestic agents. Due to the

154 CHAPTER 5. INTERNATIONAL REAL BUSINESS CYCLES

concavity of the production function, optimality requires that the world capital stock be split up between the two countries so as to equate the marginal product of capital at home and abroad. Since technology is identical in the 2 countries, this implies equalization of national capital stocks, k = k , and income levels y = y , even if consumption di ers, c 6= c .

Quadratic Approximation

You can solve the model by taking the quadratic approximation of the unconstrained objective function about the steady state. Let R be the period weighted average of home and foreign utility

R(λt) = ωU[g(λt)] + (1 − ω)U[h(λt)].

Let Rj = ωUc(c)gj + (1 − ω)Uc(c )hj, j = 1, . . . , 7 be the Þrst partial derivative of R with respect to the j−the element of λt. Denote the second partial derivative of R by

Rjk = ∂R(λ) = ω[Uc(c)gjk +Uccgjgk]+(1−ω)[Uc(c )hjk +Ucc(c )hjhk].

∂λj∂λk

(5.40) Let q = (R1, . . . , R7)0 be the gradient vector, Q be the Hessian matrix

of second partial derivatives whose j, k−th element is Qjk = (1/2)Rj,k. Then the second-order Taylor approximation to the period utility func-

tion is

R(λt) = [q + (λt λ)0Q](λt λ),

and you can rewrite (5.36) as

 

jX

 

max Et βj[q + (λt+j λ)0Q](λt+j λ).

(5.41)

=0

 

 

 

Let Qj• be the j−th row of the matrix Q. The Þrst-order conditions

are

(kt+1) : 0 = R1 + βR3 + Q1•(λt λ) + βQ3• (kt+1) : 0 = R2 + βR4 + Q2•(λt λ) + βQ4•

(ct ) : 0 = R7 + Q7•(λt λ).

(λt+1 λ), (5.42) (λt+1λ), (5.43)

(5.44)

5.2. CALIBRATING A TWO-COUNTRY MODEL

155

Now let a ‘tilde’ denote the deviation of a variable from its steady state

˜

value so that kt = kt − k and write these equations out as

˜

 

˜

˜

 

˜

 

˜

 

˜

 

˜

0 = a1kt+2

+ a2kt+2

+ a3kt+1

+ a4kt+1

+ a5kt

+ a6kt

+ a7At+1

˜

˜

˜

 

 

 

 

 

(5.45)

+a8At+1 + a9At + a10At

 

+ a11t+1 + a12t + a13,

˜

 

˜

˜

 

˜

 

˜

˜

 

˜

0 = b1kt+2

+ b2kt+2

+ b3kt+1

+ b4kt+1 + b5kt + b6kt + b7At+1

˜

 

˜

˜

 

 

 

 

+ b13,

 

(5.46)

+b8At+1 + b9At + b10At

+ b11t+1

+ b12t

 

˜

 

˜

˜

 

˜

˜

 

˜

 

 

0 = d3kt+1

+ d4kt+1

+ d5kt + d6kt + d9At

+ d10At

 

 

+d12c˜ + d13,

 

 

 

 

 

 

 

 

(5.47)

t

 

 

 

 

 

 

 

 

 

 

 

where the coe cients are given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

aj

 

bj

 

dj

 

 

 

 

1

βQ31

 

βQ41

 

0

 

 

 

 

 

2

βQ32

 

βQ42

 

0

 

 

 

 

 

3

βQ33 + Q11

 

βQ43 + Q21

Q71

 

 

 

 

4

βQ34 + Q12

 

βQ44 + Q22

Q72

 

 

 

 

5

 

Q13

 

Q23

 

Q73

 

 

 

 

6

 

Q14

 

Q24

 

Q74

 

 

 

 

7

βQ35

 

βQ45

 

0

 

 

 

 

 

8

βQ36

 

βQ46

 

0

 

 

 

 

 

9

 

Q15

 

Q25

 

Q75

 

 

 

 

10

 

Q16

 

Q26

 

Q76

 

 

 

 

11

 

Q37

 

Q47

 

 

0

 

 

 

 

 

12

 

Q17

 

Q27

 

Q77

 

 

 

 

13 R1 + βR3

 

R2 + βR4

R7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mimicking the algorithm developed for the one-country model and using (5.47) to substitute out ct and ct+1 in (5.45) and (5.46) gives

0=

0=

˜

 

˜

˜

 

˜

˜

˜

 

˜

1kt+2

+ a˜2kt+2

+ a˜3kt+1 + a˜4kt+1 + a˜5kt + a˜6kt

+ a˜7At+1

˜

˜

˜

+ a˜11,

 

 

 

(5.48)

+˜a8At+1

+ a˜9At + a˜10At

 

 

 

 

˜ ˜

 

˜ ˜

˜ ˜

 

˜ ˜

˜ ˜

˜ ˜

˜

˜

b1kt+2

+ b2kt+2

+ b3kt+1

+ b4kt+1

+ b5kt

+ b6kt + b7At+1

˜ ˜

 

˜ ˜

˜ ˜

 

˜

 

 

 

(5.49)

+b8At+1

+ b9At + b10At

+ b11.

 

 

 

156 CHAPTER 5. INTERNATIONAL REAL BUSINESS CYCLES

At this point, the marginal beneÞt from looking at analytic expressions for the coe cients is probably negative. For the speciÞc calibration of the model the numerical values of the coe cients are,

1 = 0.105,

 

˜

= 0.105,

 

 

 

b1

 

 

2 = 0.105,

 

˜

= 0.105,

 

 

 

b2

 

 

3 = −0.218,

˜

= −0.212,

 

 

b3

 

 

4 = −0.212,

˜

= −0.218,

 

 

b4

 

 

5 = 0.107,

 

˜

= 0.107,

 

 

 

b5

 

 

6 = 0.107,

 

˜

= 0.107,

 

 

 

b6

 

 

7 = −0.128,

˜

= −0.161,

 

 

b7

 

 

8 = −0.159,

˜

= −0.130,

 

 

b8

 

 

9 = 0.158,

 

˜

= 0.158,

 

 

 

b9

 

 

10 = 0.158,

 

˜

 

 

 

 

b10 = 0.158,

 

 

11 = 0.007,

 

˜

 

 

 

 

b11 = 0.007.

 

 

˜

˜

 

˜

˜

which means

You can see that a˜3 +a˜4 = b3

+b4

and a˜7 +b7 = a˜8

+b8

that there is a singularity in this system. To deal with this singularity,

˜w ˜ ˜

let At = At + At denote the ‘world’ technology shock and add (5.48) to (5.49) to get

 

3

+ a˜4

 

 

 

7

˜

 

 

11

˜

 

˜w

˜w

˜w

 

+ b7

˜w

˜w

 

+ b11

 

1kt+2+

 

2

kt+1

+˜a5kt

+

 

2

At+1

+˜a9At

+

 

2

= 0. (5.50)

 

 

 

 

 

 

 

 

 

 

 

˜w ˜ ˜ (5.50) is a second—order stochastic di erence equation in kt = kt + kt ,

which can be rewritten compactly as4

 

˜w

˜w

˜w

w

(5.51)

 

kt+2 − m1kt+1

− m2kt

 

= Wt+1,

w

˜w

˜w

, and

 

 

 

where Wt+1

= m3At+1 + m4At

 

 

 

 

 

m1

=

−(˜a3 + a˜4)/(2˜a1),

 

 

m2 = −a˜5/a˜1,

 

 

 

 

m3

=

 

 

 

˜

 

 

 

 

−(˜a7 + b7)/(2˜a1),

 

 

m4 = −a˜9/a˜1,

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

m5

=

11 + b11

.

 

 

 

 

2˜a11

 

 

4Unlike the one-country model, we don’t want to write the model in logs because

˜ ˜

we have to be able to recover k and k separately.

5.2. CALIBRATING A TWO-COUNTRY MODEL

157

You can write second—order stochastic di erence equation (5.51) as

(1

m

m

2

ˆw

= W

w

. The roots of the polynomial

L

)k

t+1

t

 

1L −

2 2

 

 

 

 

(1 −m1z −m2z ) = (1 −ω1L)(1 −ω2L) satisfy m1 = ω1 + ω2 and m2 = −ω1ω2. Under the parameter values used to calibrate the model and us-

ing the

quadratic formula,

the

roots

are,

z1

= (1/ω1)

=

 

 

 

 

 

 

 

 

 

 

 

 

[−m1

qm12 + 4

m2

]/(2m2)

 

'

1.17,

and

z2

= (1/ω2)

=

2

 

 

 

 

 

 

 

[−m1 +qm1 + 4m2]/(2m2) '

0.84. The stable root |z1| > 1 lies outside

the unit circle, and the unstable root |z2| < 1 lies inside the unit circle. From the law of motion governing the technology shocks (5.33), you

have

˜w

˜w

w

(5.52)

At+1

= (ρ + δ)At + ²t ,

where ²tw = ²t + ²t . Now EtWt+k =

m3A˜tw+1 + m4A˜tw + m5 =

k ˜w

+ m5. As in the one-country model, use

[m3(ρ + δ) + m4](ρ + δ) At

these forecasting formulae to solve the unstable root forwards and the stable root backwards. The solution for the world capital stock is

k˜tw+1

= ω1tw ω2

− (ρ + δ) ³[m3(ρ + δ) + m4]A˜tw + m5´

. (5.53)

 

 

 

(ρ + δ)

 

Now you need to recover the domestic and foreign components of

the world capital stock. Subtract (5.49) from (5.48) to get

 

k˜t+1 − k˜t+1

= Ã7 7

! A˜t+1 + Ã8 8

! A˜t+1.

(5.54)

 

 

˜

 

 

 

˜

 

 

 

 

b

 

 

 

b a˜

 

 

 

 

3 4

 

 

 

3 4

 

 

Add (5.53) to (5.54) to get

 

 

 

 

 

 

 

 

 

˜

1

˜w

˜

 

˜

 

 

 

kt+1 =

2

[kt+1

+ (kt+1

− kt+1)].

(5.55)

The date t+1 world capital stock is predetermined at date t. How that

capital is allocated between the home and foreign country depends on

˜ ˜ the realization of the idiosyncratic shocks At+1 and At+1.

˜ ˜

Given kt, and kt , it follows from the production functions that the

outputs are

 

 

 

 

 

 

 

 

 

t

 

˜

˜

˜

y

˜

 

=

fAAt

+ fkkt

= yAt + α

k

kt,

(5.56)

=

f A˜ + f k˜ = y A˜ + α

y

k˜ ,

(5.57)

 

t

 

A t

k t

t

 

 

k t