Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
43
Добавлен:
29.05.2015
Размер:
1.31 Mб
Скачать

1

Закон сохранения электрического заряда. Установим на демонстрационном столе два одинаковых электрометра. На стержне первого из них укрепим металлический диск и поставим на него второй такой же диск с ручкой из изолятора. Между дисками поместим прослойку из сукна или другого материала, являющегося изолятором. Взявшись за ручку, совершим несколько движений верхним диском по прослойке и поднимем этот диск (рис. 125).

После удаления верхнего диска стрелка первого электрометра отклонится, обнаруживая появление электрического заряда на диске и стержне электрометра. Опыт показывает, что стрелка второго электрометра после прикосновения к стержню вторым диском отклоняется примерно на такой же угол, на какой отклонилась стрелка первого электрометра (рис. 126). Это значит, что в результате электризации при соприкосновении электрические заряды появились одновременно на двух соприкасавшихся телах: на первом диске с сукном и на втором диске.

Теперь выполним последнюю часть опыта: соединим проводником стержни первого и второго электрометров (рис. 127).

При этом стрелки обоих электрометров возвращаются в вертикальное положение. Наблюдаемая в опыте взаимная нейтрализация зарядов показывает, что суммарный электрический заряд на двух дисках равен нулю.

Аналогичные опыты, выполненные с различными телами и с применением самых точных приборов для измерения электрических зарядов, показали, что в результате электризации при соприкосновении на телах всегда возникают электрические заряды, равные по модулю и противоположные по знаку.

Электрические заряды могут появляться на телах не только в результате электризации при соприкосновении тел, но и при других взаимодействиях, например под действием света. Однако в замкнутой системе, в которую не входят извне электрические заряды и из которой не выходят заряды, при любых взаимодействиях тел алгебраическая сумма электрических зарядов всех тел остается постоянной:

q1 + q2 +...+ qn = const . (36.1)

Этот экспериментально установленный факт называется законом сохранения электрического заряда.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака.

Появление положительного электрического заряда + q всегда сопровождается появлением равного по абсолютному значению отрицательного электрического заряда - q. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если равны по абсолютному значению.

Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц — электронов — от одних тел к другим. Как известно, в состав любого атома входят положительно заряженное ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.

Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд - q, а второе — равный по модулю положительный электрический заряд + q.

При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицательно заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих оболочках.

Особый случай представляет встреча заряженных античастиц, например электрона и позитрона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма зарядов электрона и позитрона равна нулю.

2

Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.

Формалировка

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка[1]:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

  3. Расположение зарядов в вакууме.

3

В пространстве вокруг электрического заряда существует электрическое поле. Электрическое поле можно изобразить графически с помощью силовых линий электрического поля, которые имеют направление. 

Электрическое поле  положительного заряда.

Электрическое поле  отрицательного заряда

Электрическое поле заряда действует с некоторой силой F эл на всякий другой заряд, помещенный в поле данного заряда.

Сила с которой электрическое поле действует на внесенный в него заряд, называется электрической силой. Она направлена всегда вдоль силовых линий электрического поля. Действие электрического поля зависит от растояния, чем меньше растояние до заряда, образующего поле, тем сильней дейсвие поля (тем больше электрическая сила).

ЭТО ИНТЕРЕСНО !

А так выглядит электрическое поле двух разноименных зарядов:

И для интересующихся - электрическое поле четырех электрических зарядов:

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечныйзаряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[1] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное[2] в разных точках пространства), таким образом, - этовекторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полемвектора магнитной индукции представляет собой электромагнитное поле[3], и законы, которым оно подчиняется, есть предмет электродинамики.

4

Свойста векторных полей

Векторное поле

     Определение 

     Векторное поле определяется векторной функцией точки

где - точка пространства,- ее радиус-вектор.

     Векторная линия 

     Векторная линия (силовая линия, линия тока) поля - решение системы

     Дивергенция (расходимость) векторного поля 

     Свойства дивергенции 

     Дивергенция векторного поля в цилиндрических координатах 

     Дивергенция векторного поля в сферических координатах 

Ротор (вихрь) векторного поля 

или в символическом виде

     Свойства ротора 

     Поток векторного поля 

     Поток векторного поля через поверхностьS в сторону, определяемую единичным вектором нормали 

где - величина проекции векторана направление вектора

     Если поверхность S задана уравнением поток через верхнюю сторону поверхности можно вычислить по формуле

     Если уравнение поверхности S есть то

 Линейный интеграл 

Линейный интеграл от вектора по линииl

где Fs - проекция вектора на касательную кl. Линейный интеграл выражает работу векторного поля вдоль линииl.

     Циркуляция 

     Циркуляция векторного поля вдоль контураl - линейный интеграл вдоль замкнутой линии l

     Формула Стокса 

или в векторной форме

где единичный вектор нормали к поверхностиS, направление которого таково, что при обходе контура l = дS поверхность S остается слева.

     Формула Остроградского 

или в векторной форме

где дV = S - внешняя сторона поверхности, ограничивающей тело V- единичный вектор внешней нормали к ней.

Потенциальное векторное поле 

     Векторное поле - потенциальное, еслиФункцияu называется потенциалом векторного поля . Полепотенциально в односвязной области тогда и только тогда, когдаилиПотенциал в этом случае можно найти, например, по формуле

5

Поток dФЕ вектора напряженности Е через малую площадку dS есть скалярное произведение векторов Eи dS

Под вектором dS понимается вектор, направленный перпендикулярно к плоскости площадки и равный по величине площади этой элементарной площадки dS. Направление dS задается правилом обхода контура площадки, и для замкнутых поверхностей совпадает с направлением внешней нормали.

Теорема Остроградского-Гаусса позволяет связать поток вектора напряженности через некоторую замкнутую поверхность с величиной зарядов, находящихся внутри этой поверхности. Поскольку строгий вывод теоремы Остроградского-Гаусса довольно сложен и выходит за рамки данного курса, мы рассмотрим частный случай, который достаточно просто поддается обобщению. Определим поток вектора напряженности через произвольную воображаемую сферическую поверхность, в центре которой расположен точечный заряд.

На всякий заряд, находящийся в электрическом поле, действует сила, и поэтому при движении заряда в поле совершается определенная работа. Эта работа зависит от напряженности поля в разных точках и от перемещения заряда. Но если заряд описывает замкнутую кривую, т. е. возвращается в исходное положение, то совершаемая при этом работа равна нулю, как бы ни было сложно поле и по какой бы прихотливой кривой ни происходило движение заряда.

Потенциал

Внося в данную точку поля различные пробные заряды мы будем, соответственно, изменять потенциальную энергию, т.е. получим различные. Но отношение потенциальной энергии к заряду остается величиной постоянной. Следовательно для характеристики поля можем использовать это отношение. Обычно оно обозначается буквойи называется потенциалом поля в данной точке

11

Потенциал является энергетической характеристикой поля. Он численно равен работе, которую надо затратить против сил электрического поля при перенесении единичного положительного точечного заряда из бесконечности в данную точку поля. Единица измерения потенциала - вольт. С учетом (1.16)

Из выше сказанного следует, что электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал , на близко расположенную эквипотенциальную поверхность, имеющую потенциал(рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения С другой стороны. Из этих уравнений получаем

Диполь во внешнем электрическом поле

Найдем момент сил, действующих на диполь в однородном электрическом поле. Пусть положения положительного и отрицательного зарядов относительно центра диполя характеризуются векторами r+ и r- , соответственно. Тогда, в соответствии с определением момента сил, имеем

12

Рис. 3.4

Так как по определению , то окончательно получим

(3.9)

Момент сил, очевидно, равен нулю, когда векторы p и E коллинеарны, однако устойчивым положением является только такое положение, когда они еще и совпадают по направлению. В однородном поле, очевидно, F+ + F_= 0.

Если диполь находится в неоднородном внешнем электрическом поле, то равнодействующая сил, действующих на положительный и отрицательный заряды диполя оказывается не равной нулю:

13

Рассмотрим энергию взаимодействия точенных зарядов. Сначала ограничимся случаем двух точечных зарядов  и . Энергия заряда  в поле заряда  может быть определена выражением

   ,                                  (5.7)

где  – потенциал, создаваемый вторым зарядом в месте нахождения первого заряда. С другой стороны, энергия заряда  может быть определена аналогичным выражением

,                                (5.8) 

где  – потенциал, создаваемый первым зарядом в месте нахождения первого заряда. 

Получаем, что энергии равны (  энергия взаимодействия зарядов   и ), однако формулы, описывающие энергию взаимодействия через заряд и потенциал, не симметричны относительно индексов 1 и 2. Чтобы сделать формулу, описывающую энергию взаимодействия зарядов, симметричной относительно индексов, перепишем ее следующим образом:

                                       .                   (5.9)

В общем случае, когда система содержит n точечных зарядов, энергия взаимодействия этих зарядов может быть описана формулой, которая получается обобщением формулы 

15

ЭЛЕКТРОСТАТИЧЕСКАЯ ИНДУКЦИЯ– наведение противоположных по знаку зарядов на проводниках и диэлектриках, помещенных в постоянное электрическое поле. Появившиеся в результате индукции заряды на поверхности тела называют индукционными.

16

ЭЛЕКТРОЕМКОСТЬ - характеризует способность двух проводников накапливать электрический заряд.  - не зависит от q и U. - зависит от геометрических размеров проводников, их формы, взаимного расположения, электрических свойств среды между проводниками.

Единицы измерения в СИ: ( Ф - фарад )

Рисунок 1.6.1.

Поле плоского конденсатора

Рисунок 1.6.2.

Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности

КОНДЕНСАТОРЫ

- электротехническое устройство, накапливающее заряд ( два проводника, разделенных слоем диэлектрика ).

где d много меньше размеров проводника. Обозначение на электрических схемах:

Все электрическое поле сосредоточено внутри конденсатора. Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов: 1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические 2. по форме обкладок: плоские, сферические. 3. по величине емкости: постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S - площадь пластины (обкладки) конденсатора d - расстояние между пластинами eо - электрическая постоянная e - диэлектрическая проницаемость диэлектрика

Включение конденсаторов в электрическую цепь

параллельное

последовательное

Тогда общая электроемкость (С):

при параллельном включении

.при последовательном включении

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор - это система заряженных тел и обладает энергией. Энергия любого конденсатора:

где С - емкость конденсатора q - заряд конденсатора U - напряжение на обкладках конденсатора Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или равна работе по разделению положительных и отрицательных зарядов , необходимой при зарядке конденсатора.

18

Энергия электрического поля — Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор

  

В формуле мы использовали :

 — Энергия электрического поля

 — Диэлектрическая проницаемость среды

 — Диэлектрическая постоянная

 — Объем занимаемый электрическим полем

 — Напряжение

 — Площадь обкладок

 — Расстояние между обкладками конденсатора

19

20

Поляризация диэлектриков-смещение электрических зарядов в диэлектрике под действием приложенного электрического поля. Можетосуществляться благодаря сдвигу ионов относительно друг друга, деформации электронных оболочекотдельных атомов, молекул, ионов либо ориентации электрических диполей, существовавших в диэлектрикеи в отсутствие электрического поля. 2) Электрический дипольный момент единицы объёма диэлектрика.

 Поляризацией называется состояние вещества, при котором элементарный объем диэлектрика приобретает электрический момент.

Описание электрического поля в диэлектриках, помимо проблем, рассмотренных при расчете полей в присутствии проводников, усложняется тем, что внутри диэлектриков могут возникать объемные поляризационные заряды. Поэтому мы в состоянии рассмотреть только простейшие задачи, связанные с описанием полей в присутствии диэлектриков.  Прежде всего, мы ограничим рассмотрение однородными и изотропными диэлектриками, то есть веществами, у которых поляризуемость одинакова во всех точках и не зависит от направления поля. Кроме того, будем рассматривать электрические поля только простейшей конфигурации.  Заметим, что среди диэлектриков существуют такие кристаллические диэлектрики, в которых поляризуемость зависит от направления поля (анизотропия). Качественно понять такую зависимость можно − смещение зарядов различно в различных направлениях. В таких диэлектриках направление вектора поляризации может не совпадать с направлением вектора напряженности электрического поля.  Пусть во внешнее однородное электрическое поле помещена плоскопараллельная пластина толщиной h, изготовленная из однородного диэлектрика, причем силовые линии электрического поля перпендикулярны граням пластины.  Под действием электрического поля диэлектрик поляризуется, то есть происходит смещение положительных и отрицательных зарядов. Схематически картину поляризации можно представить следующим образом. Мысленно разделим пластину на две − однородно заряженные (положительно и отрицательно) вложенные друг в друга

21

Когда диэлектрик не поляризован, объемная плотность r ' и поверхностная плотность s ' связанных зарядов равны нулю. В результате Поляризации поверхностная плотность? а в некоторых случаях и объемная плотность связанных зарядов становятся отличными от нуля.

На рисунке 2.1 изображен схематически поляризованный диэлектрик с неполярными (а) и полярными (б) молекулами. Из рисунка видно, что поляризация сопровождается возникновением в тонком поверхностном слое диэлектрика избытка связанных зарядов одного знака. Если нормальная составляющая напряженности поля Е для данного участка поверхности отлична от нуля, то под действием поля заряды одного знака уходят внутрь, а другого знака выходят наружу.

Между поляризованностью Р и поверхностной плотностью связанных зарядов s ' имеется простая связь. Для ее нахождения рассмотрим бесконечную плоскопараллельную платину из однородного диэлектрика, помещенную в однородное электрическое поле (рис. 2.2). Выделим мысленно в пластине элементарный объем в виде очень тонкого цилиндра с образующими, параллельными Е в диэлектрике, и с основаниями площади D S, совпадающими с поверхностями пластины. Этот объем равен

D F= /D S cos a ,

где I – расстояние между основаниями цилиндра;

a – угол между вектором Е и внешней нормалью к положительно заряженной поверхности диэлектрика.

Объем D V имеет дипольный электрический момент

PD V=PlD S cos a .

где Р – модуль поляризованности.

С макроскопической точки зрения рассматриваемый объем эквивалентен диполю, образованному зарядами +s D S и -s 'D S, отстоящими, друг от друга на расстояние /. Поэтому его электрический момент можно представить в виде s 'D SlПриравняв друг другу оба выражения для электрического момента, получим

PlD S cos a . = s 'D Sl

Отсюда вытекает искомое соотношение между s ' и Р:

s ' = Р cos a = Рn (2.9)

где Рn  проекция поляризованности на внешнюю нормаль к соответствующей поверхности.

Для правой поверхности на рис. 2.2 Рn > 0, соответственно s ' для нее положительна; для левой поверхности Рn < О, соответственно s ' для нее отрицательна.

Выразив согласно (2.5) Р через к и Е, придем к формуле

s ' = кe 0Eп (2.10)

где Еn – нормальная составляющая напряженности поля внутри диэлектрика.

В соответствии с (2.10) в тех местах, где линии напряженности выходят из диэлектрика n > 0), на поверхности выступают положительные связанные заряды, там же, где линии напряженности входят в диэлектрик n < 0), появляются отрицательные поверхностные заряды.

Формулы (2.9) и (2.10) справедливы и в самом общем случае, когда неоднородный диэлектрик произвольной формы находится в неоднородном электрическом поле. Под Рn и Еn в этом случае нужно понимать нормальную составляющую соответствующего вектора, взятую в непосредственной близости к тому элементу поверхности, для которого определяется s '.

Теперь обратимся к нахождению объемной плотности связанных зарядов, возникающих внутри неоднородного диэлектрика. Рассмотрим в неоднородном изотропном диэлектрике с неполярными молекулами воображаемую малую площадкуD S (рис. 2.3). Пусть в единице объема диэлектрика имеется п одинаковых частиц с зарядом  и n одинаковых частиц с зарядом -е. В небольшой окрестности площадки D S электрическое поле и диэлектрик можно считать однородными. Поэтому все положительные заряды, находящиеся вблизи D S, сместятся при включении поля в направлении Е на одинаковое расстояние /1, а все отрицательные заряды сместятся в противоположном направлении на одинаковое расстояние /2(см. рис. 2.3). При этом через площадку D S пройдет в направлении нормали к ней некоторое количество зарядов одного знака (положительных, если a < p /2, отрицательных, если a > p /2) и в направлении, противоположном n, некоторое количество зарядов другого знака (отрицательных, если a < p /2, положительных, если a > p /2).

Площадку D S пересекут все заряды +е, которые до включения поля отстояли от нее не более чем на l1 cos a , т.е. все +е, заключенные в косом цилиндре объемом l1D Scos a . Число этих зарядов равно nl1D Scos a , а переносимый ими в направлении нормали к площадке заряд равен enl1D S cos a (при a > p /2 заряд, переносимый в направлении нормали за счет смещения зарядов +е, будет отрицательным).

Аналогично площадку D S пересекут все заряды -е, заключенные в объеме /2D S cos a . Эти заряды перенесут в направлении нормали к площадке заряд, равный enl2D S cos a (из рис. 2.3 видно, что при a < p /2 заряды  перенесут через D Sв направлении, противоположном n, заряд -enl2 D S cos a , что эквивалентно переносу в направлении n заряда enl2 D S cos a ).

Итак, при включении тюля через площадку D S переносится в направлении нормали к ней заряд

q' enl1D S cos a + enl2 D S cos a = еn(l1 + /2)D S cos a .

Сумма l1 + /2 есть расстояние /, на которое смещаются относительно друг друга положительные и отрицательные связанные заряды в диэлектрике. В результате смещения каждая пара зарядов приобретает дипольный момент p = el = е(l1 + /2). Число таких пар в единице объема равно n. Следовательно, произведение е(l1 + l2)n = eln = pn дает модуль поляризованности Р. Таким образом, заряд, проходящий при включении поля через площадку D S в направлении нормали к ней, равен

q' PD S cos a .

22

Расп

23

25

Рассмотрение свойств электростатического поля в неоднородной диэлектрической среде было бы неполным без анализа зависимостей между компонентами соответствующих векторных полей по разные стороны от границы раздела свойств диэлектрика.

      Рассмотрим сначала зависимость между нормальными к поверхности раздела компонентами векторного поля . Пусть в окрестности произвольной точки поверхностираздела двух сред выделена малая площадкаи выбрано положительное направление нормали. Среда, расположенная в "положительном" пространстве относительно поверхности, описывается величинами с индексом 2, а среда в "отрицательном" пространстве относительно поверхности, описывается величинами с индексом 1. Из каждой точки контура, ограничивающего площадку, восстановим перпендикуляр к поверхностии отложим в среде 2 и среде 1 на этом перпендикуляре отрезок. Поверхность площадокивместе с боковой поверхностью(рис. 2.10) образуют замкнутую поверхность, охватывающую объем с различающимися локальными характеристиками. К рассматриваемому объему применима теорема Гаусса для векторного поляв интегральной форме:

     

(2.38)

     где -вектор внешней нормали к элементу площади боковой поверхности,- суммарная величина свободных зарядов внутри рассматриваемого объема:

     .

(2.39)

Рис. 2.10.

     При записи выражения (2.39) учтено, что в среде 1 и среде 2 может существовать объемная плотность свободных электрических зарядов, а сама поверхность может дополнительно содержать свободные заряды с поверхностной плотностью.

      В математическом анализе известна оценка максимальной величины интеграла :

26

С е г н е т о э л е к т р и к и  - вещества, обладающие спонтанной поляризацией, направление которой может быть изменено с помощью внешнего электрического поля. Сегнетоэлектрики обладают рядом специфических свойств, которые проявляются лишь в определенном диапазоне температур. Температура Тк (сегнетоэлектрическая точка Кюри) является температурой фазового перехода, ниже этой температуры сегнетоэлектрик обладает доменной структурой и характерными сегнетоэлектрическими свойствами; выше этой температуры происходит распад доменной структуры и сегнетоэлектрик переходит в параэлектрическое состояние. Следствием доменного строения сегнетоэлектриков являются нелинейная зависимость их поляризованности или электрической индукции от напряженности электрического поля (см. рисунок  7.8), которая носит название диэлектрической петли гистерезиса, и резко выраженная температурная зависимость диэлектрической проницаемости, в которой максимум диэлектрической проницаемости достигается при температуре, соответствующей точке Кюри.

 

Рис. 7.8.  Основные нелинейные свойства   сегнетоэлектриков

а – диэлектрический гистерезис; б – динамическая нелинейность; в–нелинейный ток через сегнетоконденсатор; г – эффективная нелинейность; д – реверсивная нелинейность; с – амплитудная  модуляция.

 

На рисунке приведены зависимости основных параметров сегнетоэлектриков (поляризации, диэлектрической проницаемости, тока и напряжения на обкладках сегнетоконденсатора), характеризующих нелинейные свойства в зависимости от напряженности электрического  поля (зависимости а),б),г),д)) и  времени приложения переменного  электрического поля (зависимости в) и е)).

В настоящее время известно несколько сотен сегнетоэлектриков, которые по типу химической связи и физическим свойствам принято подразделять на две группы: 1) ионные кристаллы, к которым относятся титанат бария ВаТiО3, титанат свинца PbTiО3, ниобат калия КNbО3, барий-натриевый ниобат ВаNaNb5О15, или сокращенно БАНАН; и др.; 2) дипольные кристаллы, к которым относятся сегнетова соль NaKC4Н4О6 • 4 Н2О, триглицинсульфат (NН2СН2СООН)3 • Н24, дигидрофосфат калия КН2РО4 и др.

Все соединения первой группы нерастворимы в воде, обладают значительной механической прочностью, легко получаются по керамической технологии. Дипольные соединения, наоборот, обладают малой механической прочностью и растворимостью в воде, благодаря чему можно вырастить крупные монокристаллы этих соединений из водных растворов.

Сегнетоэлектрики находят применение: для изготовления малогабаритных низкочастотных конденсаторов с большой удельной емкостью; для изготовления материалов с большой нелинейностью поляризации для диэлектрических усилителей, модуляторов и других управляемых устройств; в вычислительной технике — для ячеек памяти; для модуляции и преобразования лазерного излучения; в пьезо- и пироэлектрических преобразователях.

Среди конденсаторной сегнетокерамики можно выделить ряд материалов. Например, Т-900, кристаллическая фаза которого представляет собой твердый раствор титанатов стронция SrТiО3 и висмута Вi4Тi3О12 с температурой Кюри Тк = -140оС. Этот материал имеет сглаженную зависимость диэлектрической проницаемости от температуры. Для производства малогабаритных конденсаторов на низкие напряжения используют также материал СМ-1, изготовляемый на основе титаната бария с добавкой оксидов циркония и висмута. Для изготовления конденсаторов, работающих при комнатной температуре, в том числе и высоковольтных, используется материал Т-8000 (r ~ 8000), имеющий кристаллическую фазу на основе ВаТiО3 - ВаZrО3. Точка Кюри этого материала находится вблизи комнатной температуры.

Для изготовления нелинейных конденсаторов применяются другие сегнетоэлектрические материалы, обладающие резко выраженными нелинейными свойствами сильной зависимостью диэлектрической проницаемости от напряженности электрического поля. Такие материалы называются варикондами. Вариконды предназначены для управления параметрами электрических цепей за счет изменения их емкости. Сегнетоэлектрики, петля гистерезиса которых по форме близка к прямоугольной, например, такие, как триглицинсульфат (ТГС), можно применять в запоминающих устройствах ЭВМ.

Кристаллы некоторых сегнетоэлектриков и антисегнетоэлектриков имеют сильно выраженный электрооптический эффект (антисегнетоэлектрики, как и сегнетоэлектрики, также имеют доменное строение, однако спонтанная поляризованность каждого домена у них равна нулю, так как дипольные моменты внутри каждого домена сориентированы антипараллельно). Электрооптический эффект заключается в изменении показателя преломления среды, который вызван внешним постоянным электрическим полем. Он называется линейным (эффект Поккельса), если показатель преломления  изменяется пропорционально первой степени напряженности, и квадратичным, если наблюдается квадратичная зависимость от напряженности поля (эффект Керра). Электрооптические свойства сегнетоэлектрических кристаллов используются для модуляции лазерного излучения, осуществляемого электрическим полем, приложенным к кристаллу. Для электрооптических модуляторов света используют кристаллы ниобата лития LiNbО3, дигидрофосфата калия КН2РО4, прозрачнуюсегнетокерамику системы ЦТСЛ, представляющую собой твердые растворы цирконата-титаната свинца с оксидом лантана.

При легировании сегнетоэлектрической керамики ВаТiОи твердых растворов Ва(Тi, Sn)О3 и (Ва, Рв)ТiО3 неодимом и марганцем получают  материалы, которые по своим свойствам  относятся к сегнетополупроводникам. В таких материалах, благодаря легированию, возникают донорные и акцепторные уровни, и проводимость повышается в миллиарды раз до значений, соответствующих типичным полупроводникам. Однако высокая проводимость наблюдается лишь в полярной фазе при температурах ниже точки Кюри. Вблизи точки Кюри проводимость резко уменьшается — в 102 ÷106 раз, и лишь при нагреве много выше точки Кюри она снова начинает расти с увеличением температуры. Такой эффект называется позисторным. Керамические элементы — позисторы имеют низкое «холодное» и высокое «горячее» сопротивление. Они широко применяются в системах теплового контроля, измерительной технике, в пусковых системах двигателей, для авторегулировки и в других устройствах.

27

   Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S. Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интегралдает заряд, выходящий в единицу времени наружу из объемаV, охваченного поверхностью S. Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением Sсила тока:

 

(7.3.1)

 

      Из (7.3.1) и постоянства значения I во всех участках цепи постоянного тока следует, что плотности постоянного тока в различных поперечных сечениях 1 и 2 цепи обратно пропорциональны площадям иэтих сечений (рис. 7.2):

 

.

(7.3.2)

 

Рис. 7.2

      Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям. Тогда поток векторасквозь эту поверхностьS равен электрическому току I, идущему вовне из области, ограниченный замкнутой поверхностью S. Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q, охватываемый поверхностью S, изменяется за время на, тогда в интегральной форме можно записать:

 

.

(7.3.3)

 

      Это соотношение называется уравнением непрерывности. Оно является, по существу, выражением закона сохранения электрического заряда.

      Дифференциальная форма записи уравнения непрерывности записывается так:

 

или   

(7.3.4)

 

      В случае постоянного тока, распределение зарядов в пространстве должно оставаться неизменным:

      следовательно,

 

(7.3.5)

 

      это уравнение непрерывности для постоянного тока (в интегральной форме).

      Линии в этом случае нигде не начинаются и нигде не заканчиваются. Поле векторане имеет источника.В дифференциальной форме уравнение непрерывности для постоянного тока .

      Если ток постоянный, то избыточный заряд внутри однородного проводника всюду равен нулю. В самом деле, т.к. для постоянного тока справедливо уравнение , то

      Избыточный заряд может появиться только на поверхности проводника в местах соприкосновения с другими проводниками, а также там, где проводник имеет неоднородности.

28

Если в проводнике создать электрическое поле и не поддерживать это поле, то перемещение носителей тока приведет к тому, что поле внутри проводника исчезнет, и ток прекратится. Для того чтобы поддерживать ток в цепи достаточно долго, необходимо осуществить движение зарядов по замкнутой траектории, то есть сделать линии постоянного тока замкнутыми. Следовательно, в замкнутой цепи должны быть участки, на которых носители заряда будут двигаться против сил электростатического поля, то есть от точек с меньшим потенциалом к точкам с большим потенциалом. Это возможно лишь при наличии неэлектрических сил, называемых сторонними силами. Сторонними силами являются силы любой природы, кроме кулоновских.

Физическая величина, равная работе сторонних сил при перемещении единичного заряда на данном участке цепи, называется электродвижущей силой (ЭДС), действующей на этом участке:

.

Электродвижущая сила – важнейшая энергетическая характеристика источника. Электродвижущая сила измеряется, как и потенциал, в вольтах.

В любой реальной электрической цепи всегда можно выделить участок, который служит для поддержания тока (источник тока), а остальную часть рассматривать как «нагрузку». В источнике тока обязательно действуют сторонние силы, поэтому в общем случае он характеризуется электродвижущей силой и сопротивлением r, которое называется внутренним сопротивлением источника. В нагрузке тоже могут действовать сторонние силы, однако в простейших случаях их нет, и нагрузка характеризуется только сопротивлением.

Результирующая сила, действующая на заряд в каждой точке цепи, равна сумме сил электрических и сторонних:

.

Работа, совершаемая этой силой над зарядом на некотором участке цепи 1-2, будет равна:

,

где – разность потенциалов между концами участка 1-2, – электродвижущая сила, действующая на этом участке.

Величина, численно равная работе , совершаемой электрическими и сторонними силами при перемещении единичного положительного заряда, называется падением напряжения или просто напряжением на данном участке цепи. Следовательно, .

Участок цепи, на котором не действуют сторонние силы, называется однородным. Участок, на котором на носители тока действуют сторонние силы, называется неоднородным. Для однородного участка цепи , то есть напряжение совпадает с разностью потенциалов на концах участка цепи.

29

  Рассмотрим неоднородный участок цепи 1–2 на котором присутствуют силы неэлектрического происхождения (сторонние силы).

Обозначим через ε12 – ЭДС на участке 1–2; Δϕ =ϕ1 −ϕ2 – приложенную на концах участка разность потенциалов.

Если участок 1–2 неподвижен, то (по закону сохранения энергии) общая работа  A12 сторонних и электростатических сил, совершаемая над носителями тока, равна теплоте Q, выделяющейся на участке.

Работа сил по перемещению заряда q0 :    A12 = q0 ε12 + q0 Δϕ .

ЭДС ε12 , как и сила тока I, – величина скалярная. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то ε12 > 0, если препятствует, то ε12 < 0.

За время t в проводнике выделится теплота:   Q = I2  R t = I R (I t) = I R q0 .

Отсюда следует закон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщённым законом Ома:

Частные случаи: 1. Если на данном участке цепи источник тока отсутствует, то мы получаем закон Ома для однородного участка цепи: I=U/R. 2. Если цепь замкнута (Δϕ = 0), то получаем закон Ома для замкнутой цепи:

 ,где ε – ЭДС, действующая в цепи, R – суммарное сопротивление всей цепи, Rвнеш – сопротивление внешней цепи, rвнут – внутреннее сопротивление источника тока.

3. Если цепь разомкнута, то I = 0 и ε12 =ϕ2 −ϕ1 , т.е. ЭДС, действующая в разомкнутой цепи равна разности потенциалов на её концах.

4. В случае короткого замыкания сопротивление внешней цепи Rвнеш = 0 и сила тока I=ε/rвнут в этом случае ограничивается только величиной внутреннего сопротивления источника тока.

30

Правила Кирхгофа сформулированы немецким физиком Густавом Робертом Кирхгофом.

Первое правило Кирхгофа алгебраическая сумма токов, сходящихся в узле, равна нулю.

Первое правило Кирхгофа является следствием закона сохранения заряда, согласно которому ни в одной точке проводника не должны накапливаться или исчезать заряды.

Первое правило Кирхгофа можно сформулировать и так: количество зарядов, приходящих в данную точку проводника за некоторое время, равно количеству зарядов, уходящих из данной точки за то же время.

Второе правило Кирхгофа является обобщением закона Ома. Второе правило Кирхгофа - в любом замкнутом контуре разветвленной цепи алгебраическая сумма ЭДС равна алгебраической сумме произведений токов на сопротивления соответствующих участков этого контура:

Правила Кирхгофа позволяют определить силу и направление тока в любой части разветвленной цепи, если известны сопротивления ее участков и включенные в них ЭДС.

31

Обычно электрический ток сравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт (Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = 0,52*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

32

При прохождении электрического тока через металлический проводник электроны сталкиваются то с нейтральными молекулами, то с молекулами, потерявшими электроны. Движущийся электрон либо отщепляет от нейтральной молекулы новый электрон, теряя свою кинетическую энергию и образуя новый положительный ион, либо соединяется с молекулой, потерявшей электрон (с положительным ионом), образуя нейтральную молекулу. При столкновении электронов с молекулами расходуется энергия, которая превращается в тепло. Любое движение, при котором преодолевается сопротивление, требует эатраты определенной энергии.  Так, например, для перемещения какого -либо тела преодолевается сопротивление трения, и работа, затраченная на это, превращается в тепло. Электрическое сопротивление проводника играет ту же роль, что и сопротивление трения.  Таким образом, для проведения тока через проводник источник тока затрачивает некоторую энергию, которая превращается в тепло. Переход электрической энергии в тепловую отражает закон Ленца — Джоуля  или закон теплового действия тока. Русский ученый Ленц и английский физик Джоуль одновременно и независимо один от другого установили, что  при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику. Это положение называется законом Ленца - Джоуля. Если обозначить количество теплоты, создаваемое током, буквой Q (Дж),  ток, протекающий по проводнику - I, сопротивление проводника - R и время, в течение которого ток протекал по проводнику - t, то закону Ленца - Джоуля можно придать следующее выражение:  Q = I2Rt. Так как I = U/R и R = U/I, то Q = (U2/R) t = UIt.

33

К концу XIX века ученые знали связь между электрическим сопротивлением, силой тока и напряжением, которая описывается законом Ома. Благодаря эффекту Холлазнали они и то, что носителями электрического тока в металлах являются отрицательно заряженные электроны. Оставалось составить описание электрического сопротивления на атомном уровне. Первую попытку такого рода предпринял в 1900 году немецкий физик Пауль Друде (Paul Drude, 1863–1906).

Смысл электронной теории проводимости сводится к тому, что каждый атом металла отдает валентный электрон из внешней оболочки, и эти свободные электроны растекаются по металлу, образуя некое подобие отрицательно заряженного газа. Атомы металла при этом объединены в трехмерную кристаллическую решетку, которая практически не препятствует перемещению свободных электронов внутри нее (см. Химические связи). Как только к проводнику прикладывается электрическая разность потенциалов (например, посредством замыкания на два его конца двух полюсов аккумуляторной батареи), свободные электроны приходят в упорядоченное движение. Сначала они движутся равноускоренно, но длится это недолго, поскольку очень скоро электроны перестают ускоряться, сталкиваясь с атомами решетки, которые, в свою очередь, от этого начинают колебаться всё с большей амплитудой относительно условной точки покоя, и мы наблюдаем термоэлектрический эффект разогревания проводника.

На электроны же эти столкновения оказывают затормаживающее воздействие, аналогично тому, как, допустим, человеку тяжело с достаточно большой скоростью передвигаться в плотной людской толпе. В результате скорость электронов устанавливается на некоей усредненной отметке, которая называется скоростью миграции, и скорость эта, на самом деле, отнюдь не высока. Например, в обычной бытовой электропроводке средняя скорость миграции электронов составляет всего несколько миллиметров в секунду, то есть, электроны отнюдь не летят по проводам, а скорее ползут по ним темпами, достойными разве что улитки. Свет же в лампочке зажигается практически моментально лишь потому, что с места все эти медлительные электроны трогаются одновременно, как только вы нажимаете на кнопку выключателя, и электроны в спирали лампочки также приходят в движение сразу же. То есть, нажимая на кнопку выключателя, вы производите в проводах эффект, аналогичный тому, как если бы включили насос, подсоединенный к поливочному шлангу, до отказа заполненному водой, — струя на противоположном от насоса конце хлынет из шланга незамедлительно.

Друде весьма серьезно подошел к описанию свободных электронов. Он предположил, что внутри металла они ведут себя подобно идеальному газу, и применил к нимуравнение состояния идеального газа, достаточно справедливо проведя аналогию между соударениями электронов и тепловыми соударениями молекул идеального газа. Это позволило ему сформулировать формулу электрического сопротивления, как функции среднего времени между соударениями свободных электронов с атомами кристаллической решетки. Подобно многим простым теориям, электронная теория проводимости хорошо описывает некоторые основные явления из области электропроводности, но бессильна описать многие нюансы этого явления. В частности, она не только не объясняет явления сверхпроводимости при сверхнизких температурах (см. Теория сверхпроводимости, но, напротив, предсказывает неограниченный рост электрического сопротивления любого вещества при стремлении его температуры к абсолютному нулю. Поэтому сегодня электропроводящие свойства вещества принято интерпретировать в рамках квантовой механики (см. Уравнение Шрёдингера).

34

. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где t — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

                                    (103.1)

Классическая теория металлов не учитывает распределения электронов по скоро­стям, поэтому среднее время t свободного пробега определяется средней длиной свободного пробега l и средней скоростью движения электронов относительно кристаллической решетки проводника, равной u + v (u — средняя скорость теплового движения электронов). Ранее нами было показано, что v<<u, поэтому

Подставив значение t в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала

                                                     (103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

                                         (103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем z столкновений:

                                                (103.4)

Если n — концентрация электронов, то в единицу времени происходит пz столкновений и решетке передается энергия

                                                         (103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

                                                (103.6)

Величина w является удельной тепловой мощностью тока. Коэффициент пропорциональности между w и E2 по (103.2) есть удельная проводимость ; следовате­льно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорциональ­но термодинамической температуре:

где   постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение =3(k/e)2, где k  постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил =2(k/e)2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опыт­ных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная , должна возрастать пропорционально  (в (103.2) п и l от температуры не зависят, а u~). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T (см. § 98).

Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить , совпадающие с опытными значениями, надо принимать l значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.

35

Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна

По определению I= q/t. откуда q= I t. Следовательно 

Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил

(17.13)

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение, получим

Но - плотность тока, а, тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

36

Итак, электрический ток в металлах обусловлен наличием электронного газа. Но металлы отличаются от диэлектриков не только электропроводностью, но и значительной теплопроводностью. Следовательно, можно предположить, что высокая теплопроводность металлов по сравнению с диэлектриками обусловлена наличием электронного газа. Ведь с точки зрения классической теории металлы и диэлектрики ничем больше не отличаются.

Величину теплопроводности электронного газа можно оценить методами кинетической теории идеального газа. Из этой теории, в частности, вытекает, что коэффициент теплопроводности определяется выражением (см. вывод формулы (3.15) из части I):

 

Это и есть закон Видемана-Франца, который экспериментально был установлен еще в 1853 г.

Отношение коэффициента теплопроводности к коэффициенту электропроводности для всех металлов должно быть одинаково и должно расти прямо пропорционально абсолютной температуре.

37=off

38

Термоэлектри́ческие явле́ния, явления прямого преобразования теплоты в электричество в твердых или жидких проводниках, а также обратные явления прямого нагревания и охлаждения спаев двух проводников проходящим током. Обусловлены связью между тепловыми и электрическими процессами в проводниках (полупроводниках). К термоэлектрическим явлениям относятся термоэлектрический эффект Зеебека и электротермические эффекты — эффект Пельтье и эффект Томсона.

Эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает электродвижущая сила (термоЭДС), если места контактов поддерживают при разных температурах. Характеризуется коэффициентом aТ — дифференциальным коэффициентом термоЭДС.

Эффект Пельтье является эффектом, обратным явлению Зеебека: при протекании тока в цепи из различных проводников в местах контактов, в дополнение к теплоте Джоуля, выделяется или поглощается, в зависимости от направления тока, некоторое количество теплоты Qп, пропорциональное протекающему через контакт количеству электричества (то есть силе тока I и времени t), и П — коэффициенту Пельтье.

Эффект Томсона заключается в выделении дополнительного количества тепла Qт в однородном проводнике при одновременном действии проходящего тока и градиента температур. Количество выделенного тепла пропорционально коэффициенту Томсона . Этот эффект был предсказан У. Томсоном (Кельвином) на основании выведенного им термодинамического соотношения между коэффициентами Пельтье и Зеебека.

Все три термоэлектрических коэффициента, зависящие от параметров спаев и от свойств самих материалов — дифференциальный коэффициент термоЭДС aТ, коэффициент Пельтье П и коэффициент Томсона , — связаны между собой соотношением Кельвина:

aТ = П/t.

Таким образом, к термоэлектрическим явлениям относятся три взаимосвязанных эффекта, характеризующиеся соответствующими коэффициентами, различающимися для разных материалов. Причина всех термоэлектрических явлений заключается в нарушении теплового равновесия в потоке носителей, то есть в отличии средней энергии электронов в потоке от энергии Ферми. Абсолютные значения всех термоэлектрических коэффициентов растут с уменьшением концентрации носителей; поэтому в полупроводниках они в десятки и сотни раз больше, чем в металлах и сплавах. Именно поэтому термоэлектрические полупроводниковые материалы нашли в настоящее время широкое применение для создания различных приборов, принцип действия которых основан на термоэлектрических эффектах.

Термоэлектрические явления широко используются для создания термоэлектрических измерительных приборов, а также термоэлектрических генераторов и термоэлектрических холодильников.Термоэлектрические генераторы и холодильники являются устройствами непосредственного превращения тепловой энергии в электрическую или переноса тепла между спаями в термоэлектрических материалах при прохождении электрического тока. Перспективно сочетание термоэлектрических преобразователей с компактными, мощными и относительно дешевыми источниками тепла. Термоэлектрические приборы обладают принципиальными преимуществами перед обычными механическими системами: отсутствием движущихся частей, бесшумностью работы, компактностью, легкостью регулировки, малой инерционностью.

39

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ -испускание электронов нагретыми телами (эмиттерами) в вакуум или др. среду. Выйти из тела могут только те электроны, энергия к-рых больше энергии покоящегося вне эмиттера электрона (см. Работа выхода ).Число таких электронов (обычно это электроны с энергиями 1 эВ относительно ферми-уровня в эмиттере) в условиях термодинамич. равновесия в соответствии с Ферми-Дирака распределением ничтожно мало при темп-pax T300 К и экспоненциально растёт с T. Поэтому ток T. э. заметен только для нагретых тел. Вылет электронов приводит к охлаждению эмиттера. При отсутствии "отсасывающего" электрич. поля (или при малой его величине) вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространств. заряд, ограничивающий ток T. э.

Основные соотношения. При малых напряжениях V между эмиттером и анодом плотность тока моноэнергетич. электронов описывается известной ф-лой (закон трёх вторых) jV 3/2 (см. Ленгмюра формула); учёт разброса скоростей электронов, преодолевающих созданный пространств. зарядом потенц. барьер, значительно усложняет ф-лу, но характер зависимости j(V)не изменяется; при увеличении V пространств. заряд рассасывается и ток достигает насыщения j0, а при дальнейшем росте V ток слабо растёт в соответствии с Шоттки эффектом (рис.)- В сильных (E >106 В/см) электрич. полях к T. э. добавляется автоэлектронная эмиссия (термоавтоэлектронная эмиссия).

Выражение для плотности тока насыщения j0 в силу принципа детального равновесия может быть получено путём расчёта потока электронов из вакуума в эмиттер. В условиях термодинамич. равновесия этот поток должен совпадать с потоком электронов, вылетающих в вакуум. В предположении, что поверхность эмиттера однородна, внеш. поле мало, а коэф. отражения электронов от поверхности эмиттера в вакууме r в области энергий ~ kT вблизи уровня вакуума слабо зависит от энергии и не слишком близок к единице, такой расчёт приводит к ф-ле (ф о рм у л а Р и ч а р д с о н а - Д е ш м а н а)

Здесь A=A0(1-) (черта над r означает усреднение по энергиям электронов), A0 = 4pek2me/h= 120,4 А/см2.К2, F - работа выхода электрона. Предположение о слабой зависимости r от энергии нарушается лишь в исключительных (но всё же реальных) случаях, когда уровень вакуума попадает внутрь одной из запрещённых зон в электронном спектре твёрдого тела или соответствует к--л. др. особенностям в спектрах объёмных и поверхностных состояний. Работа выхода металлов слабо зависит от темп-ры (вследствие теплового расширения); обычно эта зависимость линейная: F = F0 + aT, a~10-4 -10-5 эВ/град; причём коэф. a может быть как положителен, так и отрицателен. По этой причине, однако, определяемые путём построения графика зависимости j0/T2 от 1/T в полулогарифмич. координатах (метод прямых Ричардсона) величины отличаются от F и А из ф-лы (*). Для большинства чистых металлов найденные т. о. значения А изменяются от 15 до 350 А/см2.К2.

40

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]