Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
eximernye_lazery.doc
Скачиваний:
40
Добавлен:
29.05.2015
Размер:
3.29 Mб
Скачать

2.2.2 Лазерная хирургия. Пример пересчета параметров лазерного излучения

Лазерная коррекция зрения на сегодняшний день является самым прогрессивным направлением современной офтальмологии. С помощью новейших методик возможно эффективное лечение близорукости, дальнозоркости и астигматизма, при этом результаты лечения остаются неизменными в течение всей жизни.

В 80-х гг. ХХ века появилась новая технология - эксимер-лазерная коррекция зрения. Лазерный луч, управляемый специальным компьютером по заданной программе перепрофилирования роговицы, устраняет дефекты оптической линзы глаза и выравнивает ее поверхность таким образом, чтобы лучи света, проецируемые хрусталиком, четко фокусировались на сетчатке.

Сегодня широко применяются два метода лазерной коррекции зрения: PRK (ФРК - фоторефрактивная кератэктомия) и LASIK (лазерный кератомилез).

Метод ФРК является первой попыткой использовать эксимерный лазер для медицинских целей. Суть данного метода восстановления зрения заключается в устранении неровностей роговицы путем выпаривания ее тканей. Этот метод является бесконтактным. Однако у метода ФРК есть некоторые недостатки: микроэрозия, возникающая в ходе операции, заживает в течение двух дней. При этом пациент испытывает болевые ощущения.

Метод LASIK - это сочетание микрохирургического воздействия и эксимер-лазерной технологии. Он позволяет сохранить анатомию слоев роговицы, что значительно снижает неприятные ощущения у пациента во время реабилитации после операции. В ходе лазерной коррекции зрения методом LASIK используется автоматический микрохирургический прибор (микрокератом), который срезает верхний слой роговицы, открывая лазерному лучу доступ к более глубоким слоям глазной линзы. Проводится выравнивание роговицы - микро-испарение ткани с внутренних слоёв роговицы на заданное количество микрон для придания нужной кривизны в центральной зоне без повышения температуры ткани, после чего отделенный слой возвращается на место и фиксируется за счет коллагена, вещества роговицы.

Обеспечение перестройки длины волны лазерного излучения. Сужение полосы пропускания резонатора на основной длине волны.

Благодаря короткой длине волны излучения, высокой мощности импульса, высокой стабильности мощности и направленности пучка лазеры серии LPXнемецкой фирмыLambdaPhysikпозволяют проводить очень точную обработку материалов (с разрешением до 2 мкм).

При создании установок для микролитографии с использованием линзовых оптических систем объектива и осветителя приходится использовать эксимерный лазер с очень высокой монохроматичностью. Причиной этого являются трудности, возникающие при ахроматизации кварцевой оптики. Отклонение длины волны лазерного излучения (если основная длина волны нм) составляет околонм!

Предлагается дополнить резонатор существующего эксимерного лазера диспергирующим элементом с целью обеспечения перестройки длины волны и сужения диапазона .

Предлагается использовать схему дисперсионного резонатора с двумя концевыми зеркалами и отражательной дифракционной решеткой между ними (рис.5).

Рисунок 5.

Дисперсия такого резонатора становится максимальной при скользящем угле падения света на решетку . В этом случае избирательность резонатора значительно выше, чем с автоколлимационной решеткой (угол падения равен углу дифракции).

Отсутствие неселективного (нулевой порядок) обратного отражения в активную среду резко снижает интенсивность сверхлюминесцентного фона в выходном узкополосном излучении.

Принципиальный недостаток резонаторов "со скользящим падением" - низкая дифракционная эффективность. Поэтому они используются в основном в лазерах с высоким усилением (в том числе эксимерных).

Общие сведения:Под юстировкой понимают определённую последовательность операций установки, ориентации и закрепления элементов оптических систем лазеров, в результате чего ось активного элемента выставляется перпендикулярно поверхности зеркал и совпадает с оптической осью резонатора. Такое взаимное расположение оптических элементов обеспечивает обратную оптическую связь с минимальными потерями для генерируемого излучения.

Пространственные, энергетические и электрические характеристики лазерного излучения весьма чувствительны к разъюстировке. В результате разъюстировки оптических элементов лазеров на углы, превышающие пороговый уровень (оптический угол разъюстировки), происходит срыв лазерной генерации. Поэтому для поддержания параметров лазерного излучения в заданных пределах возникает необходимость в систематическом контроле, юстировке и настройке оптических систем.

Настройка сама по себе не может с высокой точностью обеспечить получение требуемых параметров лазерного излучения. Поэтому по окончании юстировки дальнейшая корректировка положения зеркал резонатора осуществляется в работающем лазере по максимуму мощности излучения при заданной картине поля в дальней зоне или по наблюдению распределения излучения в поперечном сечении.

Наиболее распространёнными методами юстировки лазеров являются автоколлимационный и интерференционный, а так же метод оптического рычага.

Метод оптического рычага:Упрощённая схема юстировки методом оптического рычага

Рис.1

(юстировка оптической системы по бликам на экране с отверстием) представлена на рис.1, где введены следующие обозначения: 1 – вспомогательный гелий-неоновый лазер; 2 - экран с отверстием; 3, 5 – зеркала резонатора; 4 – активный элемент.

Излучение вспомогательного лазера через небольшое отверстие в экране направляется в резонатор юстируемого лазера. После отражения от разъюстированных зеркал и торца активного элемента лазерный луч возвращается к экрану под углом к оси резонатора, и на экране наблюдается ряд световых пятен (бликов); напротив, если ось луча совмещена с осью активного элемента, световое пятно образуется вокруг отверстия в экране, когда все блики совмещены с отверстием. Таким образом, критерием правильности юстировки является исчезновение лазерных бликов с экрана.

Точность установки элементов оптической системы зависит от параметров излучения вспомогательного лазера и от расстояния между юстируемыми поверхностями.

Автоколлимационный метод:Автоколлимационный метод заключается в последовательном совмещении отражения изображения перекрестья автоколлимационной сетки с отражённым изображением перекрестья окуляра. Оптическая схема автоколлиматора представлена на рис.2, где приняты следующие обозначения: 1 – поверхность юстируемого элемента; 2 – объектив; 3 – электрическая лампочка; 4 – конденсор; 5 – автоколлимационная сетка; 6 – призма-куб, склеенная из двух прямоугольных призм; 7 – стеклянная пластина с нанесённым перекрестием окуляра; 8 – окуляр.

Рис.2

Как следует из рисунка, свет от лампочки 3 попадает на конденсор 4, обеспечивающий равномерное освещение сетки 5. Автоколлимационная сетка представляет собой двухкоординатную шкалу с делениями, выполняемую обычно в виде пересекающихся прозрачных линий в непрозрачном экране. Через прорези сетки лучи света проходят объектив 2 и освещают отражающую поверхность 1, отражаясь от которой они через призму 6 и пластину 7 направляются к окуляру 8. при совмещении фокальных областей объектива и окуляра с плоскостью перекрестия окуляра можно наблюдать отчётливое изображение сетки 5 и перекрестья окуляра 7. Если юстируемая поверхность перпендикулярна оптической оси объектива, то перекрестья сетки и окуляра совпадут. Высокая точность юстировки с помощью автоколлиматора обеспечивается тем, что совмещение направлений прямого и отражённого лучей визируется по совмещению тонких линий метки оси коллиматора и изображения шкалы, которые наблюдаются через окуляр с увеличением. При повороте юстируемого элемента на угол ά отражённые от его поверхности лучи отклоняются на угол.

Минимальная погрешность измерения ориентации юстируемой поверхности определяется значением предельного угла разрешения , гдеάгл=60’’- разрешающая сила глаза;fок–фокусное расстояние окуляра;fоб– фокусное расстояние объектива.

С помощью автоколлиматора юстировку оптической системы лазера можно осуществить методом трёх меток и методом “на просвет”.

Первый метод заключается в том, что выходное зеркало снимается, а оптическая ось автоколлиматора выставляется перпендикулярно плоскости торца активного элемента. Затем снимается активный элемент и перпендикулярно оптической оси автоколлиматора ставится (помещается) непрозрачное зеркало резонатора. После этого устанавливается активный элемент и проверяется его ориентация. Если она не изменилась, то на выходное зеркало ставиться на место и юстируется. В процессе реализации рассматриваемого метода наблюдатель последовательно совмещает отражённые от трёх поверхностей изображения автоколлимационной сетки с перекрестием окуляра.

При юстировке по методу ”на просвет” все оптические элементы остаются на своих местах, что способствует повышению её оперативности. Излучение автоколлиматора , частично отражаясь, проходит выходное зеркало и активный элемент к непрозрачному зеркалу. Оптическая система считается съюстированной, если изображения автоколлимационной сетки, отражённые от зеркала и торца активного элемента, совпадают. Этим методом можно юстировать лазеры только с достаточно прозрачными и однородными активными элементами, например, неодимовый стеклянный лазер. При юстировке рубинового лазера изображение автоколлимационной сетки, отражённое от непрозрачного зеркала, из-за неоднородности рубина сильно размывается и совместить его с остальными изображениями достаточно сложно.

Интерференционный метод:Интерференционный метод юстировки, как и метод оптического рычага, основан на использовании вспомогательного лазера с малой угловой расходимостью излучения.

Рис.3

На рис.3 обозначены: 1- лазер; 2 – экран с отверстием; 3 – линза; 4 и 6 – зеркала резонатора; 5 – активный элемент. Но в отличие от рис.1 в схему юстировки между экраном 2 и резонатором вводится слаборассеивающая линза или между лазером 1 и экраном устанавливается собирающая линза, фокусирующая излучение лазера на отверстие в экране. Этим обеспечивается заполнение светом всей апертуры резонатора. Лазерные лучи, отражённые от плоских поверхностей оптических элементов, при наложении в съюстированной системе создают на экране интерференционную картину в виде концентрических колец, центрированных относительно отверстия в экране. В случае разъюстировки центр интерференционной картины смещается от центра отверстия на расстояние, пропорциональное углу между отражающими поверхностями. До начала юстировки интерференционным методом оптическая схема лазера юстируется по бликам на экране в отсутствие линзы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]