Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
310
Добавлен:
22.05.2015
Размер:
1.36 Mб
Скачать

Индолилалкиламины

К этой группе относятся химические соединения, содержщие в своем составе индольное кольцо, аминную и алкильную группы. Простейшее соединение этого типа – триптамин. Добавить

Триптамин не относится к радипротекторам, хотя и проявляет радиозащитный эффект. При введении триптамина выживаемость летально облученных мышей повышается на 20-30 %.

Производное триптамина, 5-окситриптамин (серотонин) является эффективным радипротектором. При ведении этого соединения животным до облучения, в дозе 10 – 60 мг на кг массы, LD50 увеличивается в 2-3 раза.

Другое производное триптамина, 5-метоокситриптамин, также является эффективным радиопротектором и широко используется на практике. Тривиальное название этого препарата – мексамин.

Защитный эффект мексамина показан на мышах, собаках, обезьянах. ФИД этого препарат больше 3, при введении его в расчете 10 – 60 мг на кг массы тела.

Меркаптоэтаноламины

Наиболее простое соединение из класса серосодержащих аминов – меркаптоэтаноламин.

Внутриутробное введение этого соединения мышам в расчете 150 мг/кг за 5-10 минут до облучения позволяет предотвращать гибель летально облученных животных. ФИД этого препарата для различных животных колеблется от 2 до 3. На многочисленных экспериментах с различными животными показано, что большинство соединений, относящихся к меркаптоэтаноламинам, обладают, в той или иной степени, радиозащитным эффектом. Наиболее эффективны и используются для научных и практических целей следующие соединения: дисулфидмеркаптоэтаноламин (тривиальное название препарата - цистамин), аминоэтилазотиуроний (АЭТ), натривая соль аминоэтилфосфорной кислоты (цистафос), имдазолэтиламин (гистамин).

Нужно отметить, что защитный эффект протектора проявляется только в том случае, если протектор вводится в организм незадолго до облучения. Эффективность действия протектора снижается по мере увеличения интервала времени между введением препарата и облучением объекта. Наиболее эффективное время составляет у разных животных 5-15 минут до облучения. Таким образом, молекулы протектора должны присутствовать в тканях животных во время облучения. В связи с этим, можно предположить, что механизмы действия протекторов в организме связаны с первичными реакциями лучевого поражения и что действие протекторов направлено на уменьшение продуктов радиолиза. Существует несколько гипотез, объясняющих механизмы проявления защитного эффекта протекторов в организме. Рассмотрим эти гипотезы.

Перехват и инактивация образующихся свободных радикалов. Эта гипотеза говорит о том, что химические соединения введенные в ткани и клетки, снижают количество свободных радикалов, образующихся в облучаемой среде. Следовательно, они снижают косвенное действие ионизирующей радиации. В первую очередь, защитный эффект протекторов обусловлен инактивацией свободных радикалов и других активных продуктов радиолиза воды. На первый взгляд, эта гипотеза кажется логичной и объясняющей защитный эффект протекторов. Однако, существует ряд экспериментальных данных, противоречащих этой гипотезе.Вор-первых, в соответствии с этой гипотезой, различные соединения должны проявлять одинаковую эффективность при одинаковых концентрациях, по крайней мере, при равных молярных концентрациях. Однако известно, что эффективные дозы протекторов различаются в несколько раз и даже на несколько порядков. Например, серотонин и мексамин действуют эффективно при дозе 10 –60 мг на кг массы, а концентрация цистеина для достижения такого же эффекта, должна составлять не менее 1 г/кг массы. Во-вторых, даже незначительные изменения структуры защитного соединения, которое не влияет на его антиокислительные свойства, может привести к полной утрате его протекторных свойств in vivo. В третьих, хорошие перехватчики и инактиваторы свободных радикалов в химических растворах, не обязательно являются эффективными радипротекторами. Так, например, триптофан, гистидин, тирозин являются очень хорошими перехватчиками свободных радикалов, однако в живых тканях их радиозащитный эффект равен нулю. Кроме того, внутриклеточные концентрации протекторов очень низки, а их способность реагировать со свободными радикалами не намного выше, чем некоторых внутриклеточных соединений. Все эти факты и соображения свидетельствуют о том, что в проявлении радиозащитного действия протекторов, перехват и инактивация свободных радикалов имеет место, но не может являться основной причиной проявления протекторного эффекта.

Повышение биологического фона радиорезистентности. В соответствии с этой гипотезой, введение в организм эффективных доз радипротекторов, приводит к изменению интенсивности биохимических процессов. В частности, предполагается, что эти соединения стимулируют синтез различных соединений, которые повышают устойчивость клеток, тканей и, в конечном счете, целого организма. Показано, что введение протектора сопровождается повышением концентрации в крови сульфигидрильных соединений на 10-15 %. При этом повышается и содержание эндогенных аминов, обладающих защитным эффектом (серотонин, дофамин, гистамин).

Биохимический шок. Эта гипотеза предполагает, что введение протекторов в организм приводит к разнообразным нарушениям в структуре и функционировании клеток. Показано, что инкубация клеток в растворах с протектором приводит к повышению проницаемости мембран, размыванию крист митохондрий, ингибированию некоторых биохимических реакций. Различные нарушения структуры и функций клеток и тканей называют общим термином «биохимический шок». Предполагают, что эти нарушения приводят к повышению радиорезистентности клеток и организма в целом. Как считают многие авторы, повышение радирезистентности – это частный случай неспецифической реакции клеток на действие любых повреждающих факторов. Радиопротекторы как бы имитируют действие ионизирующей радиации и индуцируют те защитные реакции, которые проявляются при облучении, например, процессы репарации макромолекул. Как известно, радиоустойчивость организмов повышается при фракционированном ( многократном и малыми дозами) облучении, при длительном облучении малыми дозами. Повышение радиоустойчивости наблюдается и при предварительном облучении ультрафиолетовым излучением ( эффект фотозащиты). О важной роли репарационной системы клеток в реализации действия протекторов убедительно свидетельствуют эксперименты С.Е. Бреслера, Л.А. Носкина. Ими показано, что меркаптоэтаноламины эффективно защищают от действия излучения только те штаммы бактерий, у которых не повреждены системы репарации. У клеток-мутантов, у которых системы репарации ДНК ингибированы, радиопротекторы не работают.

Снижение концентрации кислорода. Показано, что радиопротекторные соединения вызывают в тканях снижение напряжения (концентрации) кислорода. Это свойство протекторов коррелирует с их сосудосуживающим эффектом у животных, что также связано со снижением концентрации кислорода в крови. Интересно отметить, что защитный эффект некоторых протекторов (серотонин, гистамин) снижается или даже отсутствует при действии их антиметаболитов и при повышении давления кислорода в тканях. Поэтому многие авторы связывают механизм действия радиопротекторов, в первую очередь индолилалкиламинов, со снижением кислородного эффекта.

Соседние файлы в папке Все по радиационной безопасности