Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

СТРОЕНИЕ И ФУНКЦИИ КЛЕТКИ

.pdf
Скачиваний:
248
Добавлен:
22.05.2015
Размер:
1.55 Mб
Скачать

Внутренний просвет митохондрий, называемый матриксом, отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и рибосомы. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии.

Особенности строения растительных клеток

В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры.

Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жѐсткость. Клеточные стенки служат растениям опорой, предохраняют клетки от разрыва, определяют форму клетки, играют важную роль в транспорте воды и питательных веществ от клетки к клетке. Соседние клетки связаны друг с другом

плазмодесмами,

проходящими через мелкие поры клеточных стенок.

Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая еѐ, называется клеточным соком. . Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них относится к группе продуктов метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растения, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всею сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и

др.), аминокислоты, белки. Они являются запасными веществами клетки. Помимо запасных веществ, клеточный сок содержит фенолы, танины (дубильне вещества), алкалоиды, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин), белены (атропин), стеблях и листьях люпина и др.

В клеточном соке многих растений содержатся пигменты, которые придают клеточному соку пурпурный, красный, синий или фиолетовый цвет. Эти пигменты главным образом и определяют окраску лепестков цветков (например, роз, георгинов, фиалок, примулы и др.), плодов, почек и листьев, а также окрашивают корнеплоды некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты. В последнем случае вакуоли действуют, как лизосомы. После гибели клетки ферменты, высвобождаясь из вакуолей, вызывают автолиз клетки.

Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через тонопласт поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление: цитоплазму, а тем самым и на оболочку клетки. В результате в клетке развивается тургорное давление, которое поддерживает относительную жесткость растительных клеток, а также обусловливает растяжение клеток во время их роста. В запасающих тканях растений вместо одной центральной вакуоли часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества, как, например, жировые вакуоли (содержащие растительные масла) или белковые (алейроновые) вакуоли.

Пластиды.

Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез. В цитоплазме клеток высших растений имеется три основных типа пластид: 1) зеленые пластиды – хлоропласты; 2) окрашенные в красный, оранжевый и другие цвета хромопласты; 3)

бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой. Так, при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Снаружи хлоропласты ограничены двумя мембранами: наружной и внутренней. В состав хлоропластов высших растений, по данным электронной микроскопии, входит большое количество гран, расположенных группами. Каждая грана состоит из многочисленных круглых пластин, имеющих форму плоских мешочков, образованных двойной мембраной и сложенных друг с другом наподобие столбика монет. Граны соединяются между собой посредством особых пластин или трубочек, расположенных в строме хлоропласта и образующих единую систему. Зеленый пигмент хлоропластов содержат только граны; строма их бесцветна.

Хлоропласты одних растений содержат лишь несколько гран, других – до пятидесяти и больше.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением

Окраска хлоропластов зависит не только от хлорофилла, в них могут содержаться и другие пигменты, например каротин и каротиноиды, окрашенные в разные цвета – от желтого до красного и коричневого.

Хромопласты обычно окрашены в желтый, оранжевый, красный или бурый цвета. Сочетанием хромопластов, содержащих разные пигменты, объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев..

Следующий тип пластид – лейкопласты – бесцветные пластиды. Они содержатся в цитоплазме неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна. Примером широко распространенных лейкопластов могут служить лейкопласты клубней картофеля, в которых

накапливаются зерна крахмала Пластиды развиваются из особых клеточных структур, носящих название

пропластид. Пропластиды – это бесцветные образования, внешне похожие на митохондрии, но отличающиеся от них более крупными размерами и тем, что всегда имеют удлиненную форму. Снаружи пластиды ограничены двойной мембраной, небольшое количество мембран находится также в их внутренней части.

Пластиды размножаются путем деления, и контроль над этим процессом осуществляется, по-видимому, ДНК, содержащейся в них же. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, так же, как и сами клетки, которые возникают только из клеток, митохондрии и хлоропласты образуются только из предсуществующих митохондрий и хлоропластов. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах.