Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы к экзамену.doc
Скачиваний:
152
Добавлен:
20.05.2015
Размер:
9.18 Mб
Скачать
        1. Теорема

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

15.Однородные системы линейных уравнений

Определение 22. Система линейных уравнений называется однородной, если во всех ее уравнениях свободные члены равны нулю.

В общем случае однородная система (или система однородных уравнений) имеет вид

{a11x1+a12x2+...+a1nxn=0

{a21x1+a22x2+...+a2nxn=0

{…............................

{am1x1+am2x2+...+amnxn=0

Однородная система уравнений всегда совместна: действительно, набор значений неизвестных хi = 0 (i = l, 2, ...,n) удовлетворяет всем уравнениям системы. Это решение однородной системы называется нулевым, или тривиальным.

Решение системы однородных уравнений

Вопрос о существовании ненулевого решения однородной системы линейных уравнений (1.53) разрешает следующая теорема.

Теорема 1.7. Однородная система имеет ненулевое решение тогда и только тогда, когда ранг этой системы меньше числа ее неизвестных.

Из этой теоремы вытекают два важных следствия.

1. Если число уравнений однородной системы меньше числа ее неизвестных, то эта система имеет ненулевое решение.

  1. Если в однородной системе число уравнений равно числу неизвестных, то она имеет ненулевое решение тогда и только тогда, когда

определитель матрицы системы равен нулю.

Теорема. Для того, чтобы однородная система была нетривиально совместна, необходимо и достаточно, чтобы ранг r матрицы системы был меньше числа неизвестных n.

16.Необходимое и достаточное условие существования нетривиального решения системы nxm:

Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди этих решений есть и ненулевые и в этом случае система называется нетривиально совместной.  При m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю.

Теорема. Для того, чтобы однородная система была нетривиально совместна, необходимо и достаточно, чтобы ранг r матрицы системы был меньше числа неизвестных n.

17. Фундаментальная система решений

Решения однородной системы обладают следующими свойствами, если вектор α =(α1, α2, …,αn ) является решением системы (1.53), то и для любого числа k вектор kα =(kα1 kα2, ..., kαn)также будет решением этой системы. Если решением системы (1.53) является также и вектор γ =(γ1, γ2, …, γn), то сумма α+γ также будет решением

этой системы. Отсюда следует, что любая линейная комбинация решений однородной системы также является решением этой системы.

Как мы знаем из 1.1.4, всякая система n-мерных векторов, состоящая более чем из n векторов, является линейно зависимой. Таким образом, из множества векторов-решений однородной системы (1.53) можно

выбрать базис, т. е. любой вектор-решение данной системы будет линейной комбинацией векторов этого базиса. Любой такой базис называется фундаментальной системой решений (ФСР) однородной системы линейных уравнений. Справедлива следующая теорема.

Теорема 1.8. Если ранг r системы однородных уравнений (1.53) мень-ше числа неизвестных п, то всякая ее фундаментальная система решений состоит из (n - r) решений.

Укажем теперь способ нахождения фундаментальной системы решений. Пусть система однородных уравнений (1.53) имеет ранг г < n. Тогда, как следует из правила Крамера, базисные неизвестные этой системы Х1, х2, ..., хг линейно выражаются через свободные переменные

xr+1, …, xn:

x1=β11x1+β12x2+...+β1n-rxn

…..............................................

xr=βr1xr+1 + βr2xr+2 + … + βrn-rxn

Выделим частные решения однородной системы (1.53) по следующему принципу. Для нахождения первого вектора-решения х, примем значения свободных переменных xr+1=1, xr+2=xr+3=xn=0. Затем

находим второе решение х2: принимаем х,.+ 2 = 1, а остальные г - 1 свободные переменные примем равными нулю. Иными словами, мы последовательно присваиваем каждой свободной переменной единичное

значение, считая остальные нулями. Таким образом, фундаментальная система решений (ФСР) в векторной форме с учетом первых г базисных переменных (1.54) имеет вид

x1 = (β11, β21, …, βr1, 1, 0, ...0) ,

х2 = (β12, β22, …, βr2, 0, 1, 0, …, 0 ),

…...........................................................................................

xn-1=(β1n-r, β2n-r, …, βr n-r, 0, …, 0, 1)

(1.55)

Фундаментальная система решений (1.55) является одним из фундаментальных наборов решений однородной системы (1.53).