Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biolgia_genetika_chel.docx
Скачиваний:
75
Добавлен:
20.05.2015
Размер:
81.14 Кб
Скачать

6.4.3.7. Биохимический метод

В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.

Впервые эти методы стали применять для диагностики генных болезней еще в начале XXв. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных белков.

Дефекты структурных и циркулирующих белков выявляются при изучении их строения. Так, в 60-х гг. XX в. был завершен анализ (3-глобино-вой цепи гемоглобина, состоящей из 146аминокислотных остатков. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний (см. § 4.1).

Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме (см. § 4.1).

Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором —более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.

6.4.3.8. Методы изучения днк в генетических исследованиях

Как было показано выше, нарушения первичных продуктов генов выявляются с помощью биохимических методов. Локализация соответствующих повреждений в самом наследственном материале может быть выявлена методами молекулярной генетики.

Разработка метода обратной транскрипции ДНК на молекулах мРНК определенных белков с последующим размножением этих ДНК привела к появлению ДНК-зондов для различных мутаций нуклеотидных последовательностей человека. Использование таких ДНК-зондов для гибридизации с ДНК клеток пациента дает возможность выявлять у него соответствующие изменения в наследственном материале, т.е. диагностировать определенные виды генных мутаций (генодиагностика).

Важными достижениями молекулярной генетики последних десятилетий явились работы по секвенированию  определению нуклеотидной последовательности ДНК.

Это стало возможным благодаря открытию в 60-х гг. XX в. ферментов — рестриктаз,выделенных из бактериальных клеток, которые разрезают молекулу ДНК на фрагменты в строго определенных местах. В естественных условиях рестрикгазы защищают клетку от проникновения в ее генетический аппарат и размножения в нем чужеродной ДНК. Применение этих ферментов в эксперименте дает возможность получать короткие фрагменты ДНК, в которых относительно легко можно определить последовательность нуклеотидов.

В настоящее время полностью установлена последовательность нуклеотидов многих генов человеческого генома, в том числе генов α- и (β-глобиновых цепей гемоглобина, некоторых полипептидных гормонов (инсулина, гормона роста, хорионического соматотропина, пролактина). Интенсивно изучаются нуклеотидные последовательности генов актинов, тубулинов, интерферонов. Этими исследованиями выявлена высокая степень генетического полиморфизма у человека, который часто не проявляется фенотипически.

Методы молекулярной генетики и генной инженерии позволяют не только диагностировать целый ряд генных мутаций и устанавливать нуклеотидную последовательность отдельных генов человека, но и размножать (клонировать) их и получать в большом количестве белки — продукты соответствующих генов.

Клонирование отдельных фрагментов ДНК осуществляется путем включения их в бактериальные плазмиды, которые, автономно размножаясь в клетке, обеспечивают получение в большом количестве копий соответствующих фрагментов ДНК человека. Последующая экспрессия рекомбинантных ДНК в бактериях позволяет получить белковый продукт соответствующего клонированного человеческого гена.

Таким образом, с помощью методов генной инженерии стало возможно получать на основе человеческих генов некоторые первичные генные продукты (инсулин). Это определяет перспективы терапии наследственных болезней, обусловленных связанным с генными мутациями дефицитом нормальных продуктов генов.

Дальнейшее совершенствование методов молекулярной генетики обеспечит возможность полного определения нуклеотидных последовательностей не только структурных, но и регуляторных локусов генома человека, а разработка методов включения в человеческий геном нормальных нуклеотидных последовательностей в перспективе может стать основой генотерапии.

Множественные аллели

  • Генетика и эволюция

 

  • Хромосомная теория наследственности

 

  • Множественные аллели

 

  • агглютиноген

 

  • локус

 

  • серия множественных аллелей

Все рассмотренные до сих пор примеры относились к таким точкам хромосомы — локусам, которые могут быть заняты одним из аллелей — доминантным или рецессивным. Однако во многих, если не в большинстве локусов могут быть еще и такие аллели, которые отличаются по своему фенотипическому проявлению как от доминантного, так и от рецессивного генов. Три или большее число генов, которые могут находиться в одном и том же локусе, т. е. занимать одно и то же положение в гомологичных хромосомах, называют серией множественных аллелей. Все они обусловливают различные фенотипы. Каждая особь в популяции может иметь любые два из таких аллелей, но никак не больше, а каждая гамета, разумеется, содержит только один из них. Однако в популяции в целом соответствующий локус может быть представлен тремя или большим числом аллелей.

По типу множественных аллелей наследуются группы крови О, А, В и АВ у человека. Ген IA содержит код для синтеза в эритроцитах специфического белка — агглютиногена А; ген IB вызывает синтез другого белка — агглютиногена В, ген i не продуцирует никакого агглютиногена. Ген i рецессивен по отношению к двум другим, но ни ген IA, ни ген IB не доминируют друг над другом. (Символы IA, IB и i указывают на то, что все эти три гена — аллели одного и того же локуса.) Таким образом, генотипы IA IA и IA i обусловливают группу крови А, генотипы IB IB и IB i — группу В, а генотип ii — группу О. Если же у человека имеются оба нерецессивных гена IA и IB, то у него образуются оба агглютиногена и он имеет группу крови АВ.

Поскольку группы крови обусловлены генетически и не изменяются в течение всей жизни, их определение может помочь установить истину в случаях спорного отцовства. Однако на основании группы крови нельзя доказать, что данный человек действительно является отцом данного ребенка; можно лишь установить, что он мог бы быть его отцом, или же, исключить такую возможность. Подумайте: может ли мужчина с группой крови АВ быть отцом ребенка с группой О? Может ли ребенок с группой АВ быть сыном мужчины с группой О? Может ли ребенок с группой В иметь мать с группой А и отца с группой А или О?

Наряду с системой АВО существует еще с десяток других систем групп крови, в том числе система MN и серия аллелей Rh; они определяются другими генами и наследуются независимо от групп АВО. Определение всех этих групп дозволяет иногда выяснять родственные отношения, которые нельзя было бы достоверно установить на основании одних лиш

Кроме антигенов А, В, 0 на поверхности эритроцитов имеются антигены системы резус. Резус – фактор детерминируется генами, которые локализованы в первой паре хромосом человека. Rh+     -     DD,     Dd         -85% rh -      -        dd                    -15%   Группы крови резус – системы наследуются как менделирующие признаки.   При браке  rh -  ♀      с Rh +  ♂        может возникнуть резус – конфликт.   P   ♀   dd   x    ♂    DD F1           Dd – 100%   P    ♀  dd   x    ♂    Dd F1         Dd, dd   Во время беременности Rh +  эритроциты плода могут попасть в кровь матери, и материнский организм начнёт выработку антител против этих эритроцитов. С каждой последующей беременностью увеличивается риск иммунизации и возрастает вероятность возникновения гемолитической  болезни новорожденных и её тяжести.

Источник: http://4anosia.ru/mnozhestvennyie-alleli-nasledovanie-grupp-krovi/

Кроме антигенов А, В, 0 на поверхности эритроцитов имеются антигены системы резус. Резус – фактор детерминируется генами, которые локализованы в первой паре хромосом человека. Rh+     -     DD,     Dd         -85% rh -      -        dd                    -15%   Группы крови резус – системы наследуются как менделирующие признаки.   При браке  rh -  ♀      с Rh +  ♂        может возникнуть резус – конфликт.   P   ♀   dd   x    ♂    DD F1           Dd – 100%   P    ♀  dd   x    ♂    Dd F1         Dd, dd   Во время беременности Rh +  эритроциты плода могут попасть в кровь матери, и материнский организм начнёт выработку антител против этих эритроцитов. С каждой последующей беременностью увеличивается риск иммунизации и возрастает вероятность возникновения гемолитической  болезни новорожденных и её тяжести.

Источник: http://4anosia.ru/mnozhestvennyie-alleli-nasledovanie-grupp-krovi/

Группы крови системы MN. Первый случай кодоминантного взаимодействия аллелей у человека был описан для групп крови системы MN. В этой системе существует три группы  M, N и MN. В ходе  обширного исследования было показано, что у родителей с одинаковой группой крови M или N  рождаются дети, с таким же фенотипом, как и у родителей. Это значит, что обладатели группы крови M или N могут быть только гомозиготами MM или NN соответственно.  Дети с группой MN появляются тогда, когда один из родителей имеет группу крови M, а другой N.   В этом случае оба аллеля функционируют вместе, и это проявляется в формировании особого фенотипа MN.

Группы крови системы Rh. Другая система групповых антигенов, названная системой резус-фактора (Rh), находится под более сложным генетическим контролем.  Эта система включает три пары антигенов (D, C/c, E/e), кодируемые двумя тесно сцепленными высоко гомологичными генами, локализованными в коротком  плече хромосомы 1 – RHD и RHCE. По-видимому, эти два гена произошли в процессе эволюции в результате дупликации от общего предкового гена. Основная роль в Rh-системе принадлежит антигену D, продукту гена RHD. При его наличии на поверхности эритроцитов кровь является резус-положительной. Антигены C/c и E/e кодируются геном RHCE, и они образуются в результате альтернативного сплайсинга. Резус-отрицательный фенотип формируется при отсутствии антигена D, возникающем при делеции гена RHD. От 0,2% до 1% людей имеют особый «слабый» вариант антигена D, обозначаемый Du. Причиной появления этого фенотипа являются мутации в гене RHD. Носители Du-фенотипа также являются резус-отрицательными и им можно переливать только резус-отрицательную кровь. На самом деле генетический контроль групп крови  АВ0 и Rh более сложный, так как существует большое число генов, оказывающих модифицирующее влияние на  эти системы. Достаточно сказать, что в настоящее время идентифицировано более 46 Rh-антигенов. Однако, независимо от подробностей взаимоотношений между этими антигенами, основное правило сохраняется неизменным: резус-отрицательная принадлежность крови определяется отсутствием или недостаточностью антигенаD.

Знание групповой принадлежности по Rh-системе имеет огромное значение для предотвращения резус-конфликта между матерью и плодом, который может возникнуть во время беременности. Частота  людей с резус-положительной принадлежностью – Rh(+), составляет  85%, остальные 15%  являются резус-отрицательными – Rh(-). Если у резус-отрицательной женщины  муж   имеет  резус-положительную принадлежность, то с высокой вероятностью  ребенок окажется резус-положительный, и тогда  может возникнуть резус-конфликт между плодом и матерью.  В 15%  подобных случаев после 7 недели, когда в крови плода появляются зрелые эритроциты, в крови беременных с Rh(-)  могут начать вырабатываться специфические противорезусные антитела. Через плаценту они попадают в кровь плода и  в  отдельных  случаях могут там накапливаться в большом количестве, вызывая агглютинацию эритроцитов и их разрушение. Как правило, первая беременность заканчивается благополучно, мертворождения и выкидыши встречаются редко. Особенно велика вероятность возникновения резус-конфликта при повторных беременностях Rh(-)-женщины. Во время родов около 1 мл крови плода может попадать в кровоток матери, и после первых родов резус-отрицательная мать будет сенсибилизирована к резус-положительным антигенам ребенка. Подобная сенсибилизация может происходить и при абортах, хотя и с меньшей вероятностью. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в крови женщины может резко возрасти.  Следствием  этого  процесса может быть разрушение красных кровяных телец плода  и формирование у него гемолитической болезни, проявляющейся анемией, желтухой, отеками и обусловливающей сложные интеллектуальные дефекты, нарушения слуха и речи, двигательные расстройства.  Нередко у новорожденных с гемолитической  болезнью, вызванной резус-конфликтом,  развивается тяжелый детский церебральный паралич  с  эпилептической  болезнью и значительным отставанием психического развития.

Степень поражения центральной нервной системы и других органов зависит от уровня непрямого билирубина, поступающего в кровь из разрушенных эритроцитов, и длительности гипербилирубинемии. Этот процесс приводит к токсико-аноксическому поражению мозга – билирубиновой энцефалопатии. Наиболее эффективным средством лечения гемолитической болезни новорожденных является обменное переливание крови в первые сутки жизни (а иногда и внутриутробно), способствующее удалению продуктов гемолиза  и антител матери  из крови больного ребенка.

Для профилактики резус-конфликта и гемолитической болезни у плода  женщине  с  отрицательной резус-принадлежностью при любом внутриматочном вмешательстве во время первой беременности (медицинский аборт,   самопроизвольный   выкидыш   с  последующим выскабливанием, роды) показано введение  анти-Д-иммуноглобулина. Этот препарат снижает резус-сенсибилизацию беременной,  то есть её чувствительность  к  резус-фактору и  соответственно формированию резусных  антител. Введение анти-Д-иммуноглобулина при повторных беременностях не показано, так как  женщина уже сенсибилизирована, то есть чувствительна  к  резус-фактору, и имеет   резусные  антитела.  Женщина  с  Rh(-) непременно должна обсудить с врачом-генетиком проблемы профилактики  рождения ребенка с последствиями билирубиновой энцефалопатии в виде тяжелого детского церебрального паралича.

В редких случаях конфликт возникает и по АВ0 системе, но протекает он в значительно более легкой форме, чем при резус-конфликте. Поэтому будущие родители  должны знать свою группу крови не только по Rh, но и по АВ0 системе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]