Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Техника и технология бурения нефтяных и газовых скважин

.pdf
Скачиваний:
2082
Добавлен:
13.08.2013
Размер:
14.58 Mб
Скачать

Рис. 4.13. Схема к расчету сил, действующих на различные элементы шарошки:

1 − лапа долота

Силы сопротивления скольжению могут быть определены с учетом действия распределенной осевой нагрузки q. Для случая, когда нескользящей точкой на образующей шарошки является точка À, можно получить следующие выражения

F1 = 2f1qc; F2 = 2f2ql,

(4.26)

ãäå c, l – расстояние от точки A до сил соответственно F1 è F2; q – распределенная нагрузка на образующую шарошки.

Для случая равномерного вращения шарошки

F1r1 = F2r2,

ãäå r1, r2 – соответственно радиусы шарошки в точках приложения сил F1 è F2.

78

Рис. 4.14. Схема действия сил при опоре шарошки на зубча- тые венцы

Из геометрических построений (см. рис. 4.13), видно, что

 

 

c

 

 

r1

=

 

 

 

 

 

+ l sin α;

 

 

 

 

 

 

 

2

 

 

r2

=

l

sin α.

 

 

 

 

 

 

 

2

 

 

 

 

 

Тогда

 

 

 

 

 

 

 

c

 

 

F1

=

 

 

+ l sin α −

 

 

 

 

 

2

 

 

F

l

sin α = 0.

(4.27)

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

При подстановке

â

уравнение (4.27) значений

F1 è F2 из выражения (4.26) с учетом l R – c, получают

c2 − 2cR +

R2

= 0.

(4.28)

 

2

 

 

Решение уравнения (4.28) дает возможность определить c è b, а следовательно, точки приложения сил F1 è F2, создающих момент сопротивления проворачиванию шарошек вокруг точки A в горизонтальной плоскости.

Нормальное усилие, действующее на цапфу со стороны забоя,

Q = T cos α.

(4.29)

Осевая составляющая нагрузки

 

N = T sin α.

(4.30)

При калибровании ствола скважины на тыльную часть шарошки действует сила реакции G со стороны стенки скважины, которая направлена вдоль оси шарошки на расстоянии rø от ее оси и создает момент MG, стремящийся повернуть шарошку в вертикальной плоскости:

MG = Grø cos α.

(4.31)

Значение реакций опор Á è Ñ (см. рис. 4.13) определяется с учетом

действия эквивалетной нагрузки:

 

RÁ′ = mRÁ , RÁ′′ = mRÑ ,

(4.32)

ãäå RÁ, RC реакции опор при приложении нагрузки T в точке A; m – коэффициент эквивалентности, учитывающий смещение точки A в зависимо-

79

сти от приложения нагрузки. Перекатывание венца шарошки создает ударное действие зубьев по породе забоя. Динамическая составляющая осевой нагрузки на долото определяют по формуле

Qä = aF,

(4.33)

ãäå a – коэффициент, зависящий от статической нагрузки;

 

F = näzi/60.

(4.34)

4.3. АЛМАЗНЫЕ ДОЛОТА

Алмазные долота, применяемые для бурения скважин сплошным забоем, представляют собой цельный стальной корпус 1 с присоединительной конической резьбой, к которому прикрепляется фасонная алмазонесущая головка-матрица 2 (рис. 4.15). По характеру закрепления и размещения алмазов в матрице различают долота одно-, многослойные и импрегнированные (с объемным размещением мелких алмазов в теле матрицы).

По форме торца алмазные долота разделяются на плоские, выпуклые, вогнутые, выпукло-вогнутые, выпукло-конусные, двоякоконусные, ступен- чато-конусные, комбинированные. В свою очередь, выпуклые и выпукловогнутые долота могут быть сфериче- скими или грушевидными. Профиль долота должен соответствовать форме естественного износа. При бурении абразивных пород этой форме соответствует профиль выпукло-конусных долот. Поэтому эта форма получила наибольшее

распространение.

Современные конструкции алмазных долот имеют обратный конус в центральной части с углом при вершине от 55 до 120°. Конусный керн, образующийся при бурении, разрушается от вибрации и выносится через промывочные канавки. Однако при бурении крепких пород зависание долота на керне приводит к разрушению центра долота, так как резание породы в центральной части забоя практически отсутствует.

Периферийная часть алмазного долота представляет собой сферическую поверхность, переходящую по мере удаления от торца в цилиндрическую. Цилиндрическая часть производит калибровку стенок скважины. Диаметр алмазных долот на 1,5–2,5 мм меньше диамет-

Рис. 4.15. Алмазное долото

80

ра шарошечных и лопастных долот тех же номинальных размеров. Это объясняется тем, что при бурении шарошечными долотами на стенках скважины образуются спиралевидные выступы, уменьшающие проходное сечение скважины.

Алмазные долота различаются также по форме промывочных каналов. Известны долота с центральной или торцовой промывкой; с сужающимися

èрасширяющимися промывочными каналами; радиальными, касательными

èспиральными промывочными каналами. Форма промывочных каналов и их сечение выполняются так, чтобы обеспечить хорошее удаление частиц

выбуренной породы, охлаждение и очистку рабочей части головки долота. Наиболее современными, с точки зрения охлаждения алмазов, являются долота со ступенчатой поверхностью и радиальными сужающимися каналами.

По расположению алмазов на рабочей поверхности различают долота с радиальной, шахматной, концентрической, спиральной схемами размещения. Выбор схемы размещения определяется механическими свойствами породы, системой промывки, размерами, формой и сортностью алмазов.

Рабочая поверхность долота оснащается алмазами различных размеров. Размеры их для калибрующей части 0,1–0,25 карата1; для торцовых поверхностей 0,2–0,34 карата; для конусных поверхностей 0,1–0,25 карата. Количество зерен алмазов, устанавливаемых на поверхности долота диаметром 140 мм, составляет 1000–1100; в долотах диаметром 212 мм – до 2000. На одно долото расходуется от 200 до 700 карат алмазов.

Алмаз является самым твердым из всех известных минералов и искусственных веществ. Непревзойденная твердость и высокая износостойкость обусловили его широкое применение в технике. По химическому составу алмаз является чистым углеродом. Плотность его колеблется от 3470 до 3540 кг/м3. Алмаз довольно хрупок. При высоких температурах (2000– 3000 °С) алмаз без доступа кислорода превращается в графит. В воздухе алмаз сгорает при температуре 850–1000 °С.

Алмазы в первую очередь разделяются на ювелирные и технические. В природе значительно чаще встречаются агрегатные разновидности алмазов: борт, карбонадо, баллас, конго. В бурении обычно применяют агрегатные разновидности алмазов.

Карбонадо, тонкозернистые плотные агрегаты буровато-черного цвета, имеют наибольшую прочность и встречаются очень редко. С точки зрения использования в бурении они стоят на первом месте. На втором месте стоят бесцветные и желтоватые балласы, имеющие большую крепость благодаря наружной твердой оболочке толщиной около 1 мм. Третье место занимает борт, обладающий небольшой крепостью вследствие трещиноватости кристаллов. В настоящее время борт – основное сырье для изготовления буровых долот, так как он встречается часто и имеет невысокую цену, идет в основном на изготовление абразивного сырья.

Используется три способа изготовления алмазных долот: чеканка крупных алмазов, заливка и метод порошковой металлургии.

Чеканка является старейшим способом изготовления кольцевых коронок и представляет собой ручное закрепление алмазов в заранее приготовленные гнезда в металлической основе. Чеканка малопроизводительна и в настоящее время используется редко.

1 Один карат равен по массе 0,2 г.

81

Способ заливки заключается в том, что в угольную или графитовую форму по определенной схеме раскладываются алмазы, а затем форму заливают легкоплавким сплавом. Отлитое кольцо-матрица припаивается к готовому корпусу долота или непосредственно при его литье. Недостатком способа является низкое качество матриц.

Способ порошковой металлургии – наиболее прогрессивный. Изготовление алмазных долот по этому способу сводится к следующим операциям.

Готовят смесь порошков-шихты, раскладывают алмазы в разборную пресс-форму, засыпают шихту в пресс-форму, прессуют шихту, спекают матрицу, обрабатывают долото.

Для изготовления шихты в качестве основного материала обычно используется карбид вольфрама (90–95 %), а связывающим металлом является кобальт (5–20 %). В качестве основного металла используются также порошковый вольфрам, ферромолибден, никель. Связывающими материалами могут быть сплавы меди и цинка в различных соотношениях.

Раскладка алмазов в пресс-форму проводится вручную с помощью пинцета или вакуумного карандаша по определенной схеме. Выбор схемы раскладки зависит от конструктивных особенностей алмазного долота.

После засыпки шихты в пресс-форму и прессования долото помещают в электрическую печь и разогревают до определенной температуры в водородной среде в зависимости от состава матрицы. Обычно температура спекания 650–1300 °С, выдержка 1–2 ч.

После остывания долото подвергается механической обработке: обта- чивают корпус, нарезают резьбу, изготовляют промывочные каналы. Иногда рабочая поверхность алмазных долот обрабатывается пескоструйным аппаратом для получения нужного оголения алмазов. Абсолютное значение оголения находится в пределах 0,1–0,75 мм.

Корпус алмазного долота изготовляют из конструкционной углеродистой или хромистой стали марки 40Х с содержанием углерода 0,35– 0,4 %.

4.4. ЛОПАСТНЫЕ ДОЛОТА

Лопастные долота могут быть режущего и истирающережущего типов.

РЕЖУЩИЕ ЛОПАСТНЫЕ ДОЛОТА

Лопастные долота режущего типа выпускаются двух основных видов: двухлопастные 2Л и трехлопастные 3Л.

Лопастное долото состоит из стального штампованного или литого корпуса с конической присоединительной резьбой и лопастей, отштампованных или отлитых вместе с корпусом, присоединенных или приваренных к нему (рис. 4.16). Лопасти выполняются со скосом боковых граней под углом 3–5°, направленным в сторону, противоположную вращению. В зависимости от твердости пород лопасти заправляются под различными уг-

82

Рис. 4.16. Лопастное долото:

1 − корпус; 2 − насадка; 3 − лопасти

лами, отличающимися формой передней грани, ее наклоном относительно плоскости, перпендикулярной к оси долота. Угол наклона грани относительно этой плоскости называется углом резания. В центре долота делается вырез для улучшения его работы, так как разрушение породы в этой зоне затруднено.

Корпус и лопасти долота выполняются из среднеуглеродистых нелегированных или малолегированных конструкционных сталей. Передняя и боковая грани лопастей для увеличения стойкости армируются твердым сплавом. После приварки лопастей к корпусу на передней и боковой гранях ее вырезают канавки, дно которых наплавляется крупкой зернистого твердого сплава – релит. В армированные пазы укладываются твердосплавные пластины. Для этого применяют твердый сплав на основе карбида вольфрама типа ВК8. Затем поверхности лопасти и пластины твердого сплава заплавляют чугунным припоем с крупкой твердого сплава с помощью ацетилено-

кислородного пламени. Для снятия напряжений после сварки и наплавки долото подвергают нормализации. После этого на корпусе долота нарезают присоединительную резьбу, производят подгонку размера по диаметру и заправку лезвий долота в соответствии с назначением.

Трехлопастные долота типа 3ЛГ диаметром от 118 до 445 мм имеют три промывочных канала, в которые могут быть установлены гидромониторные насадки. Двухлопастные долота типа 2Л выпускают диаметром от 76 до 161 мм. Для упрощения изготовления и удобства при эксплуатации лопастные долота 3Л и 2Л нескольких размеров изготовляют с одинаковым корпусом.

Разновидностью лопастных долот являются долота типа РХ (рыбий хвост), изготовляемые больших диаметров (от 490 до 640 мм) по требованию заказчика для бурения мягких и средних пород. Долото типа РХ представляет собой поковку из стали марки 40. Верхняя часть долота снабжена замковой резьбой для присоединения к колонне бурильных труб. В нижней части долото имеет форму лезвия, заправленного в виде рыбьего хвоста. Лопасти долота армируются твердым сплавом.

83

Долото типа РХ поддается реставрации по мере износа рабочего лезвия и поэтому используется многократно.

ИСТИРАЮЩЕ-РЕЖУЩИЕ ДОЛОТА

Долота истирающе-режущего действия предназначены для бурения вязких, мягких и средних по твердости пород с абразивными пропластками.

Долото типа ИР (рис. 4.17) состоит из корпуса 1, приваренных к нему шести лопастей, из которых три нижние – 2, 8 è 9 имеют нормальную высоту и три верхние 5, 6, 7 – укороченную. Режущие кромки лопастей армированы цилиндрическими зубками из твердого сплава типа ВК8. Промежутки между штырями и передняя грань всех лопастей армируются зернистым твердым сплавом – релит. Боковые грани лопастей, калибрующие стенки скважины, также армируются твердосплавными штырями и слоем релита.

Промывочная жидкость на забой поступает через минералокерамиче- ские насадки 4, вставляемые в дно корпуса долота. Насадки крепятся в корпусе при помощи пружинных колец, которые удерживают их от выпадения в корпус при транспортировке. Насадки герметизируются резиновыми кольцами 3.

Долота типа ИР (с обыч- ной промывкой) и типа ИРГ (с гидромониторной промывкой) выпускаются диаметром от 76 до 269 мм. Присоединительные резьбы выполняются шести типоразмеров.

Долота типов ДСГ3ЛИР истирающе-режущего и ДСГ3ЛР режуще-скалываю- щего действия обладают преимуществами трехлопастных и долот типа ИР. Поэтому при бурении роторным способом перемежающихся мягких и средней твердости пород они показали лучшие результаты по сравнению с шарошечными долотами.

Отличительной особенностью долот типов ДСГ3ЛИР и ДСГ3ЛР является то, что они снабжены тремя лопастями, имеющими три или четыре

Рис. 4.17. Долото типа ИР

84

ступени. Конструктивно эти долота друг от друга отличаются расположением рабочих поверхностей, соотношением диаметров нижних и верхних ступеней, а также схемой армирования лопастей твердым сплавом.

Изготовляются долота из штампованного корпуса, к которому строго радиально привариваются три лопасти. Профиль лопастей прямоугольный, шириной 12 мм, с задним углом 45°. Такой профиль снижает размер опорной поверхности долота по мере износа лопастей.

Аналогичными по принципу разрушения забоя являются долота типа ИСМ. Эти долота имеют шесть лопастей, расположенных радиально, профиль которых имеет грушевидную форму. Поверхности лопастей армированы твердым сплавом славутич и зернистым твердым сплавом.

Долота типа ИСМ показали хорошие результаты при бурении скважин забойными двигателями в породах средней твердости.

5

ГЛАВА РАБОТА БУРИЛЬНОЙ КОЛОННЫ

Бурильная колонна представляет спущенную в скважину сборку из бурильных труб, предназначенную для подачи гидравлической и механической энергии к долоту, создания осевой нагрузки на долото, а также для управления траекторией бурящейся скважины.

Являясь совместно с долотом и забойным двигателем буровым инструментом, бурильная колонна выполняет следующие функции: передает вращение от ротора к долоту; воспринимает от забойных двигателей реактивные моменты; подает к забою промывочный агент; подводит гидравличе- скую мощность к долоту и погружному гидравлическому двигателю; вдавливает долото в горные породы на забое, действуя своей силой тяжести; обеспечивает замену долота и погружного двигателя посредством транспортирования их к забою или на дневную поверхность; позволяет вести аварийные и другие специальные работы в стволе скважины.

Бурильная колонна (рис. 5.1) включает следующие элементы: бурильные трубы; утяжеленные бурильные трубы; ведущую (рабочую) бурильную трубу; переводники; отклонитель; центраторы, протекторы и другую оснастку.

Ведущая труба 2 соединена верхним концом с вертлюгом при помощи переводника ствола вертлюга и верхнего переводника ведущей трубы 1, а нижним концом − с колонной бурильных труб, спущенных в скважину, при помощи нижнего 3 и предохранительного 4 переводников ведущей трубы. Ведущая труба вращается ротором и через бурильную колонну передает вращение долоту при роторном бурении, а при турбинном − не позволяет при замкнутом столе ротора вращаться бурильной колонне в противоположном направлении под действием реактивного момента погружного двигателя.

Бурильные трубы соединены друг с другом при помощи замков, которые состоят из муфты 5 и ниппеля 6, или муфты.

Нижняя часть бурильной колонны составлена из УБТ 10, которые со-

85

Рис. 5.1. Конструкция бурильной колонны:

1 − верхний переводник ведущей трубы; 2 − ведущая труба; 3 − нижний переводник ведущей трубы; 4 − предохранительный переводник ведущей трубы; 5 − муфта замка; 6 − ниппель замка; 7 − бурильные трубы; 8 − протектор; 9 − переводник переходной на УБТ; 10 − ÓÁÒ; 11 − центратор; 12 − наддолотный центратор-калибратор

единены друг с другом при помощи замковых резьб, нарезанных в виде ниппеля с одной стороны и в виде муфты − с другой. Посредством переводника нижний конец УБТ соединяется либо непосредственно с долотом, либо с погружным двигателем.

5.1. ФИЗИЧЕСКАЯ МОДЕЛЬ БУРИЛЬНОЙ КОЛОННЫ

Все элементы бурильной колонны постоянно находятся под действием различных по характеру сил:

осевой растягивающей нагрузки от собственного веса и перепада давления на долоте и в забойном двигателе;

осевой сжимающей нагрузки от собственного веса;

усилия, создающего изгибающий момент при вращении колонны;

усилия, создающего крутящийся момент, необходимый для вращения долота в процессе бурения;

усилия реактивного момента забойного двигателя;

силы от действия гидравлического давления бурового раствора в осевом и радиальном направлениях;

сил трения о стенки скважины и обсадной колонны;

осевых нагрузок, возникающих при затяжках и посадках бурильной колонны;

инерционных сил при спускоподъемных операциях; изгибающих усилий в интервалах искривления ствола скважины;

изгибающих усилий при морском бурении из-за перемещений бурового судна;

усилий от продольных, поперечных и крутильных колебаний из-за неуравновешенности вращающейся бурильной колонны, неустойчивости работы забойного двигателя и неоднородности разбуриваемых пород.

Характер действующих на бурильную колонну сил переменный как по длине, так и во времени. Поэтому практически задачи о напряжениях целесообразно решать лишь для предельных, наиболее опасных случаев с целью выработки конкретных рекомендаций об ограничивающих критиче-

86

ских параметрах процессов, гарантирующих безаварийную длительную работу качественной бурильной колонны.

Особенностью работы бурильной колонны является то, что она подобно длинному тонкому стержню, подверженному воздействию продольных, поперечных сил и крутящего момента, теряет устойчивость прямолинейной формы равновесия.

Каждая из упомянутых выше сил вследствие значительной длины колонны способна вызвать потерю ее устойчивости. В результате нарушается прямолинейная форма равновесия, и устойчивой становится изогнутая форма равновесия бурильной колонны. Центробежные силы вызывают изгиб колонны в форме плоской волнообразной кривой, а крутящий момент придает бурильной колонне форму пространственной спирали. Так, что ось бурильной колонны принимает форму пространственной спирали − изогнутой кривой переменного шага, значение которого возрастает в направлении от забоя к устью скважины.

Действующие на колонну растягивающие осевые силы увеличивают длину полуволны и шаг спирали. Сжимающие осевые силы, наоборот, уменьшают длину полуволны и шаг спирали. Шаг спирали обычно существенно больше длины полуволны, так как крутящий момент незначительно влияет на форму искривления.

Потеря прямолинейной формы равновесия бурильной колонны может привести к значительным ее деформациям, но в условиях скважины значе- ние деформации ограничено стенками скважины, что позволяет вести бурение при искривленной форме равновесия бурильной колонны.

Промысловые материалы убеждают, что соприкосновение изогнутой бурильной колонны со стенками скважины при вращении происходит, как правило, в местах установки замков. Такая форма изгиба объясняется тем, что жесткость замков в несколько раз больше жесткости бурильных труб,

èэто в значительной степени предопределяет положение мест перегиба оси изогнутой бурильной колонны. Бурильные замки и трубы, соприкасаясь со стенками скважины или обсадной колонны, истираются. В практике бурения отмечается как равномерный, так и односторонний износ замков

èтруб по наружной поверхности, что может быть объяснено характером

вращения колонны в скважине. При вращении изогнутой колонны вокруг оси скважины происходит преимущественно односторонний износ замков и труб. Изгиб колонны в этом случае может быть следствием осевых сжимающих усилий, центробежных сил или крутящего момента. Равномерный износ поверхности замка или трубы происходит при вращении бурильной колонны вокруг собственной оси. Такое вращение возможно при значи- тельном трении колонны о стенку скважины, когда вращение вокруг оси скважины полностью прекращается, а возможность вращения вокруг собственной оси сохраняется.

Вращение изогнутой под действием центробежных сил бурильной колонны вокруг оси скважины не должно приводить к изменению знака напряжения (рис. 5.2). Полуволна abc после поворота колонны на 180° заняла положение abc без изменения знака кривизны, а следовательно, и напряжения. Однако такое представление идеализировано. На самом деле при числах оборотов, близких к критическим, которые зависят от длины колонны и формы равновесия, при вращении колонны будут наблюдаться удары труб о стенки скважины с возможным изменением знака их кривизны. По этой же причине могут возникнуть и дополнительные воздейст-

87

Соседние файлы в предмете Добыча нефти и газа