Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Техника и технология бурения нефтяных и газовых скважин

.pdf
Скачиваний:
2082
Добавлен:
13.08.2013
Размер:
14.58 Mб
Скачать

Рис. 1.8. Структурная карта, соответствующая кровле пласта À и подошве пласта Â, и геологический профиль по линии Ã−Ä

ны должны дать конкретный ответ: имеется ли нефтяное или газовое месторождение на разведываемой площади, каково его промышленное значе- ние, каковы свойства УВ.

Все разведочные данные обобщают в виде геологических профилей и

Рис. 1.9. Некоторые условные обозначения горных пород, наиболее часто используемые геологическими службами:

1 − глины; 2 − глины алевритистые; 3 − алевролиты; 4 − песчаники; 5 − промышленная нефть; 6 − нефте- и газопроявления; 7 − мергели; 8 − мергели доломитовые; 9 − известняки; 10 − доломиты; 11 − ангидриты; 12 − гипсы; 13 − каменная соль; 14 − нефтепроявления; 15 − возможные коллекторы с нефтью или газом

18

структурных карт в масштабе (рис. 1.8), которые являются основой для надежного сооружения эксплуатационных скважин.

Для отображения литологической характеристики пород в разрезах используют условные знаки (см. рис. 1.9).

1.7. СОСТАВЛЕНИЕ ГЕОЛОГИЧЕСКОГО РАЗРЕЗА СКВАЖИНЫ

Бурение скважин предполагает по первым скважинам представить геологический разрез, но в ряде случаев его приходится уточнять.

Разрезом скважины называется графическое изображение показателей, устанавливаемых на основании данных бурения скважины и определяющих характер проходимых пород. Разрез скважины должен иметь указания характерных особенностей конкретного нефтяного месторождения и мест осложнений, наличия газа, высоких и низких аномальных пластовых давлений.

Основным методом изучения и корректировки разрезов является изу- чение образцов пород, поднятых в процессе бурения.

Комплекс наблюдений при бурении для составления нового или уточ- нения существующего разреза сводится к следующему: проведение исследований и наблюдений, необходимых для составления детального комплексного разреза скважин, в том числе комплекса геофизических работ, лабораторное и промысловое изучение образцов − кернов, шлама, флюида пласта, выходящего с буровым раствором из скважины, исследование фи- зико-химических свойств воды, нефти и газа и т.д. Отбор керна с помощью колонковых долот обеспечивается еще недостаточно качественно, и вынос его не превышает обычно 50−80 %.

В настоящее время используют следующие методы для составления представления о разрезе пород, проходимых скважиной: изучение внешнего вида кернового материала и шлама, анализ срабатываемости долот, изменение механической скорости бурения и проходки на долото, геофизи- ческие методы (каверно- и профилеметрия, электрокаротаж, газовый каротаж), физико-химические методы анализа пород, отобранных при бурении скважин.

Изучение разреза скважины по внешним признакам подразумевает определение литологического состава пород (по керну) с последующим сопоставлением их с кернами других близко расположенных скважин для установления наиболее характерных (опорных) горизонтов, литологическая характеристика которых постоянна, а мощность часто фиксирована. По кернам нескольких скважин удается установить тектонические нарушения.

По анализу шлама предположительно определяют породы, проходимые в процессе бурения. В основе этого анализа лежат определение гранулометрического состава шлама в буровом растворе и установление его минералогической характеристики. Для проведения указанного анализа применяют емкость с сетками размером 1; 0,25 и 0,1 мм.

Анализ времени и характера срабатываемости буровых долот, изменения механической скорости бурения и проходки на долото (механический каротаж) предусматривает учет твердости проходимых пород и изменение в связи с этим технологических параметров. В практике за оценочный параметр принимают крепость горных пород, что применительно к бурению

19

пока еще недостаточно уточнено. Считается, что при прочих равных условиях время бурения 1 м скважины прямо пропорционально коэффициенту крепости пород. Общепринятой качественной оценкой крепости горных пород считается следующая. Породы делят на крепкие, твердые, средние, слабые, мягкие. На разрезе скважины породы установленной крепости окрашиваются в различные цвета.

Наиболее полно геологический разрез скважины изучается с помощью геофизических методов. Они основаны на измерении некоторых физиче- ских параметров горных пород, прямо или косвенно связанных с их литологией, коллекторскими свойствами и водонефтегазонасыщенностью.

При вскрытии пласта установившиеся условия нарушаются, изменяются свойства пластовых флюидов, движение и перераспределение в пористой среде. Вода, нефть и газ располагаются в пласте обычно в соответствии с их плотностью. В газовой залежи при отсутствии нефти газ залегает непосредственно над водой. Однако полного гравитационного разделения газа, нефти и воды не происходит. Это остаточная (связная) вода. Ее количество может изменяться от долей процента до 70 % объема пор (т.е. до 20−25 % объема коллектора). Вследствие капиллярного подъема воды в порах пласта «зеркала вод» не существует, и содержание воды по вертикали постепенно изменяется от 100 % до значения содержания связной воды в повышенных частях залежи.

1.8. СОСТАВ И МИНЕРАЛИЗАЦИЯ ПОДЗЕМНЫХ ВОД

Пластовые воды оказывают весьма существенное влияние на качественные и количественные показатели работ при углублении ствола, креплении и цементировании нефтяных и газовых скважин. Пластовые воды − постоянные спутники нефтегазовых месторождений. Они играют большую роль в поисках, формировании и разработке залежей.

Вода различается по наличию растворенных в ней примесей и солей. По температуре воды делятся на холодные, теплые, горячие и очень горя- чие. Температура воды существенно влияет на количество содержащихся в ней солей и газов. По положению относительно нефтегазоносных горизонтов пластовую воду относят к краевой, подошвенной воде; она бывает верхней, нижней, погребенной (реликтовой), находящейся непосредственно в нефтяном пласте и остающейся неподвижной при движении нефти. Солевой состав вод в нефтяном пласте неодинаков для всех частей структуры.

При изучении пластовых вод для характеристики их свойств принято определять общую минерализацию воды и ее жесткость, содержание главных шести ионов, рН, плотность, запах, вкус, прозрачность, поверхностное натяжение, а также проводить анализ растворенных газов − бактериологи- ческий или микробиологический.

Общая минерализация воды выражается суммой содержащихся в ней химических элементов, их соединений и газов. Она оценивается по сухому (или плотному) остатку, который получается после выпаривания воды при температуре 105−110 °С. По размеру сухого остатка воды разделяются на пресные (содержание солей < 1 г/л), слабосолоноватые (1−5 г/л), солоноватые (5−10 г/л), соленые (10−50 г/л), рассолы (≥ 50 г/л).

Главные химические компоненты в подземных водах: хлор − ион (Cl),

20

сульфат − ион (SO24), гидрокарбонатный и карбонатный ионы (HCO3−) è

(CO32−), а также ионы щелочных и щелочноземельных металлов и оксидов:

натрия Na+, кальция Ca2+, магния Mg2+, железа и SiO2 (в коллоидном состоянии). В воде растворяются азот, кислород, углекислый газ, сероводород

и т.д. В настоящее время принята форма химического анализа воды − ионная. Так как молекулы солей в растворе распадаются на катионы и анионы, те и другие должны находиться в эквивалентных количествах. Для перевода результатов анализа воды, выраженных в ионной форме, в эквивалентную, следует количество каждого найденного элемента (в мг/л) разделить на его эквивалентную массу. Эквиваленты ионов могут быть выражены также в процентах от суммы анионов и катионов, каждая сумма анионов и катионов принимается за 50 или 100 %.

Для подземных вод нефтегазовых месторождений характерно повышенное содержание иода, брома, бора, аммония и вблизи нефтяной залежи − нафтеновых кислот. По химическому составу это обычно хлоридно- кальциево-натриевые рассолы с общей минерализацией 50 г/л и выше. Воды нефтяных месторождений бывают кислые и щелочные гидрокарбонат- но-натриевого и иногда хлоридно-сульфатно-натриевого состава.

При оценке подземных вод (для питания паровых котлов, хозяйственных целей и т.д.) следует обращать внимание на жесткость воды, под которой понимают свойство воды, обусловленное содержанием в ней солей кальция и магния: Сa(HCO3)2, Mg(HCO3)2, CaCO3, CaCl2, MgCl2. Различают жесткость общую, характеризующуюся присутствием солей Ca и Mg, постоянную, обусловленную содержанием солей Ca и Mg, за исключением бикарбонатов, и временную, определяемую наличием бикарбонатов Ca и Mg. Временная жесткость воды может быть найдена по разности общей и постоянной. Кипяченая вода характеризуется только постоянной жесткостью. Природные воды по жесткости разделяются на следующие типы: очень мягкие, умеренно жесткие, жесткие и очень жесткие.

В основу классификации пластовых вод по Пальмеру положено соотношение в воде количеств ионов щелочных металлов K+ è Na+ (a), ионов

щелочноземельных металлов Ca2+ è Mg2+(b) и анионов сильных кислот Cl(d).

В зависимости от преобладания тех или иных ионов в воде Пальмер разделяет все воды на пять классов:

I .....................................................

d < a

II....................................................

d = a

III...................................................

a < d < a + b

IV ..................................................

d = a + b

V....................................................

d > a + b

Для характеристики качества воды используются шесть показателей: первичная соленость, первичная щелочность, вторичная соленость, вторич- ная щелочность, третичная соленость, третичная щелочность.

В соответствии с классификацией природных вод по В.А. Сулину, применяемой в нефтегазодобывающей промышленности, последние подразделяются на четыре генетических типа: I − сульфатно-натриевые; II − гидрокарбонатно-натриевые; III − хлормагниевые; IV − хлоркальциевые. Принадлежность воды к определенному генетическому типу устанавливается по отношению эквивалентов отдельных ионов. Каждый тип вод под-

21

разделяется на группы: А − гидрокарбонатные, Б − сульфатные, В − хлоридные. Группы, в свою очередь, подразделяются на классы и подгруппы. Воды относятся к определенной группе и подгруппе на основании отношения эквивалентов отдельных ионов.

Âбольшинстве пластовых вод содержатся анионы и мыла нафтеновых

èжирных кислот, фенолы и азотсодержащие кислоты.

1.9. ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ В СКВАЖИНАХ

Геофизические исследования (каротаж) дают возможность уточ- нить по всей глубине скважины ее геологический разрез: литологический состав пород и интервалы их однородности, мощность пластов, интервалы залегания нефтяных, газовых и водяных горизонтов, а также пористость и проницаемость пород, границы ВНК и ГНК, температурное поле разреза.

В настоящее время известно более 40 видов каротажа. Основные из них: электрические, радиоактивные, термические, акустические, индукционные, геотермические методы.

Электрические методы основаны на измерении характеристик электрического поля в стволе скважины. Специальным глубинным прибором, опускаемым в скважину на многожильном кабеле, измеряют и регистрируют на ленте удельное электрическое сопротивление горных пород разреза (кривая КС) и изменение естественных электрических потенциалов (кривая ПС). Против таких пород, как известняки и насыщенные нефтью песчаники, регистрируется значительное кажущееся электрическое сопротивление, а против глин и водоносных песчаников − существенно меньшее. Вследствие гидродинамической связи бурящейся скважины с проходимыми горными породами между ними происходят незначительные перетоки разнородных жидкостей (пластового флюида и промывочного агента), вследствие чего возникает электродвижущая сила (ЭДС) (подобно ЭДС внутри аккумулятора с электролитом). В более проницаемых породах жидкость перемещается быстрее, и создается большая разность естественных потенциалов. Так, против хорошо проницаемых песков и песчаников возникает аномалия естественной разности потенциалов по сравнению с плохо проницаемыми глинами и известняками.

Специалисты, изучая и сопоставляя кривые КС и ПС, выделяют в разрезе породы различных типов: пески, песчаники, глины, известняки. По очень большим аномалиям КС определяют интервалы залегания нефтегазовых горизонтов (напомним, что нефть и газ диэлектрики).

Весьма информативными методами промысловых геофизических исследований являются радиоактивные методы: гамма-метод (ГМ), гамма- гамма-метод (ГГМ), нейтронный гамма-метод (НГМ) и др. С помощью этих методов исследуют естественную и наведенную радиацию горных пород разреза скважины. А так как разные по литологическому составу и типу горные породы имеют различную радиоактивность, то по зарегистрированной амплитуде этих характеристик специалисты уверенно дифференцируют разрез скважины.

С помощью термометрического каротажного зонда (электротермометра) измеряют температуру в стволе скважины, и результаты измерений используют при расчете обсадных колонн, подборе рецептур цементного

22

раствора, оборудовании устья скважины. Помимо этого, зарегистрированная термограмма показывает более низкую температуру против проницаемых пластов, куда проникал промывочный агент и охлаждал пласт, а также против газонасыщенных пород за счет адиабатного расширения газа вблизи скважины.

Акустический каротаж − сравнительно новый метод в промысловогеофизических исследованиях. В его основе лежит регистрация упругих колебаний, возбуждаемых в скважине на различной глубине. Скорость распространения колебаний в породах в радиальном направлении, особенность их затухания позволяют оценить пористость пород. Этот метод обычно используют в комплексе с индукционным каротажем, который позволяет выделить среди пористых пород нефтеносные коллекторы.

Простым, но информативным методом являются каверно- и профилеметрия. Особым прибором каверномером измеряют и регистрируют изменение диаметра ствола скважины по глубине. Чем устойчивее порода, тем ближе диаметр ствола к номинальному (диаметру долота). В рыхлых породах (глинах, песках и т.д.) стенки скважины размываются промывочным агентом и разрушаются бурильной колонной, в результате возникают зна- чительные уширения ствола − каверны, что четко регистрируется на кавернограмме в виде аномалий кривой.

Данные кавернометрии используют также при расчете цементирования скважины, так как они позволяют уточнить необходимые объемы цементного раствора.

Все виды геофизических исследований используются в комплексе. Современная каротажная станция для глубинных геофизических исследований массой около 20 т монтируется на автомобилях. Она оснащена 7-жильным бронированным кабелем наружным диаметром 12 мм, рассчи- танным на разрывное усилие до 8 т (масса 1000 м кабеля равна 1 т). Кабель имеет термостойкую изоляцию, выдерживающую температуру до 300 °С.

Для обработки и интерпретации результатов геофизических исследований в настоящее время широко используют компьютеры.

В последние годы, в связи со значительным увеличением объемов бурения горизонтальных скважин, стали широко использовать скважинный автономный прибор электрического каротажа, который записывает данные на собственную магнитную ленту. Автономный прибор, перед подъемом бурильной колонны из скважины, проталкивают промывочным агентом через полость бурильной колонны к долоту. Его нижняя часть − гибкий зонд − проходит через отверстие долота и в процессе подъема бурильной колонны из скважины дает сигналы на магнитную ленту об электрических свойствах горных пород по глубине.

Совместный анализ каротажных диаграмм, записанных в одном масштабе глубин, позволяет специалистам однозначно определить не только литологические характеристики разреза скважины и дать рекомендации для выполнения последующих технологических операций, но и точно установить глубины залегания и мощность нефтегазоносных горизонтов, подлежащих испытанию для целей промышленного использования.

23

2

ОБЩИЕ ПОНЯТИЯ

ГЛАВА

О СТРОИТЕЛЬСТВЕ СКВАЖИН

Нефть и газ добывают, пользуясь скважинами, основными процессами строительства которых являются бурение и крепление. Необходимо осуществлять качественное строительство скважин во все возрастающих объемах при кратном снижении сроков их проводки с целью обеспе- чить страну нефтью и газом при снижении трудо- и энергоемкости и капитальных затрат.

Бурение скважин − единственный источник результативной разведки и приращения запасов нефти и газа.

Скважины на нефть и газ могут быть систематизированы следующим образом:

структурно-поисковые, назначение которых − установление (уточнение) тектоники, стратиграфии, литологии, оценка продуктивности горизонтов (без дополнительного строительства скважин);

разведочные, служащие для выявления продуктивных объектов, а также для оконтуривания уже разрабатываемых нефтяных и газоносных пластов;

добывающие (эксплуатационные), предназначенные для добычи нефти и газа из земных недр; к этой категории относят также нагнетательные, оценочные, наблюдательные и пьезометрические скважины;

нагнетательные, предназначенные для закачки в пласты воды, газа или пара с целью поддержания пластового давления или обработки призабойной зоны; эти меры направлены на удлинение периода фонтанного способа добычи нефти или повышения эффективности добычи;

опережающие добывающие, служащие для добычи нефти и газа с одновременным уточнением строения продуктивного пласта;

оценочные, назначение которых − определение начальной водонефтенасыщенности и остаточной нефтенасыщенности пласта (и для проведения иных исследований);

контрольные и наблюдательные, предназначенные для наблюдения за объектом разработки, исследования характера продвижения пластовых флюидов и изменения газонефтенасыщенности пласта;

опорные скважины бурят для изучения геологического строения крупных регионов, установления общих закономерностей залегания горных пород и выявления возможностей образования в этих породах месторождений нефти и газа.

Производственная деятельность буровых предприятий неизбежно связана с техногенным воздействием на объекты природной среды. В силу специфических особенностей ведения горных работ процессы сооружения скважин оказывают отрицательное влияние на лито-, гидро- и биосферу. Техногенез при бурении скважин носит химико-токсический и физикомеханический характер и проявляется в нарушении естественного экологического равновесия экосистем, снижении хозяйственной ценности гидросферы, падении ресурсо- и биогенетического потенциала биосферы и деградации отдельных компонентов природной среды. Для предупреждения

24

загрязнения окружающей среды в процессе строительства скважин должен соблюдаться комплекс природоохранных мероприятий.

Охрана окружающей среды при строительстве скважин включает: защиту недр от загрязнения и рациональное использование природных

минеральных ресурсов; защиту земной поверхности (лито-, гидро- и биосферы) и воздушного

бассейна от негативного влияния техногенных факторов при бурении и разработке нефтегазовых месторождений.

Охрана недр − это совокупность мероприятий по наиболее полному извлечению полезного ископаемого или максимально возможному сокращению его потерь, наиболее рациональному использованию минеральных ресурсов в хозяйстве, исключающих неоправданные потери минерального сырья и топлива, а также отрицательные воздействия на природу.

Охрана земной поверхности и воздушного бассейна − это совокупность правовых, организационных, экономических и инженерных мероприятий по исключению загрязнения объектов гидро-, лито- и биосферы материалами, химреагентами, технологическими жидкостями, используемыми при ведении буровых работ, образующимися отходами, а также физико-меха- нического воздействия на компоненты природной среды, приводящего к нарушению нормального функционирования экосистем.

Сохранение окружающей среды в нефтегазодобывающей промышленности на экологически безопасном (нормативном) уровне имеет свои особенности, которые необходимо учитывать при строительстве скважин, разработке и эксплутации месторождений нефти и газа. К основным из них относятся следующие:

1)разрушение покрова Земли и растительности при строительстве скважин;

2)проникновение бурового раствора (или его фильтрата) в поры и трещины пластов с полезными ископаемыми. Особенно опасны гидроразрывы пластов с последующим поглощением бурового раствора;

3)открытые нерегулируемые газонефтеводопроявления;

4)крепление буровых скважин с поглощениями тампонажного раствора или его фильтрата на глубину, большую, чем предусмотрено технологи-

ческими соображениями;

5)движение флюидов между пластами по любым причинам;

6)закачка значительных объемов различных растворов и материалов в пласты при бурении в условиях поглощений;

7)воздействие на пласты различными методами (тепловыми, химиче- скими, силовыми и др.) с целью увеличения и ускорения поступления

флюидов к скважине.

2.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Нефтяная или газовая скважина − это приблизительно цилиндрическое сооружение в глубь Земли, включающее преимущественно вертикальную или наклонную горную выработку в непродуктивной зоне пород и соединенную с ней выработку любой направленности в продуктивной зоне горных пород, крепь в виде обсадных труб и цементных оболочек и фильтр, обеспечивающий надежную гидродинамическую связь скважины с продуктивным пластом. Основными элементами скважины

25

являются: устье, забой, ствол, обсадная колонна, фильтр, цементное кольцо.

Устье − это начало скважины, образованное короткой вертикальной зацементированной трубой − направлением.

Забой − это дно ствола скважины.

Ствол − это горная выработка, внутри которой располагаются обсадные колонны и производится углубление скважины.

Обсадная колонна − это свинченные друг с другом и опущенные в ствол обсадные трубы с целью изоляции слагающих ствол горных пород. Различают первую обсадную колонну − кондуктор, последнюю обсадную колонну − эксплуатационную колонну, в том числе хвостовик, промежуточные обсадные колонны, в том числе летучки (лайнеры).

Фильтр − участок скважины, непосредственно соприкасающийся с продуктивным нефтяным или газовым горизонтом. Фильтром может служить необсаженный колонной участок ствола, специальное устройство с отверстиями, заполненное гравием и песком, часть эксплуатационной колонны или хвостовика с отверстиями или щелями.

Цементное кольцо − затвердевший цементный раствор, закачанный в кольцевое пространство между стволом и обсадной колонной с целью его герметизации.

Система обсадных колонн и цементных колец за ними составляют крепь скважины.

Только сооруженная скважина может ответить на вопрос: имеется ли в данном районе нефтяное или газовое месторождение и какова промышленная ценность залежи УВ.

Сооружение скважины, независимо от ее назначения (разведочная, параметрическая, эксплуатационная и т.д.), включает в себя следующие основные этапы:

1.Геологическое обоснование места сооружения и составление проекта скважины, которые позволяют наилучшим образом выполнить поставленную задачу.

2.Монтаж технических средств для наиболее качественного и экономичного сооружения скважины.

3.Проводку ствола скважины, обеспечивающую высокую скорость углубления при минимальных затратах.

4.Глубинные геофизические и технологические исследования, позволяющие подробно изучить геологический разрез, термодинамические параметры вскрытых скважиной пластов, отобрать образцы горных пород и пластовых флюидов для лабораторных исследований.

5.Крепление ствола обсадными трубами и цементом, обеспечивающее длительную безаварийную эксплуатацию скважины как инженерного сооружения и ее экологическую безопасность.

6.Изготовление глубинного фильтра, обеспечивающего качественную

èнадежную гидродинамическую связь продуктивного пласта с полостью эксплуатационной колонны и препятствующего проникновению в колонну

горной породы и других загрязняющих УВ примесей.

7. Оборудование устья скважины, включающее, при необходимости, подвеску колонны насосно-компрессорных труб, обеспечивающее качественное испытание скважины и дальнейшую длительную эксплуатацию ее как объекта добычи УВ.

26

2.2. ГЕОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ МЕСТА ЗАЛОЖЕНИЯ И ПРОЕКТИРОВАНИЕ СКВАЖИНЫ КАК ИНЖЕНЕРНОГО СООРУЖЕНИЯ

Для геологического обоснования места заложения скважины привлекают все имеющиеся у геологов материалы по интересующей площади: результаты поверхностных геологических и геофизических исследований данной площади, геологические карты и профили аналогичных площадей, результаты картировочного бурения и сведения о так называемых опорных скважинах, данные о грунтовых и артезианских водах, сведения о поверхностных нефтегазопроявлениях, общие сведения о строении осадоч- ного чехла Земли и др.

Как разведочные, так и эксплуатационные первые скважины закладывают в предполагаемых наивысших точках обнаруженной благоприятной структуры, чтобы наверняка вскрыть углеводородную зону газонефтяной ловушки. По полученным из первых скважин сведениям выбирают местоположение последующих скважин, перед которыми ставится более широкая задача − определить размеры залежи, положение ВНК и ГНК, эффективную мощность продуктивных пластов, изменение по простиранию их пористости и проницаемости, уточнить структурную карту месторождения (карту изогипс), получить данные для определения термодинамических параметров продуктивных пластов и построения карт изобар и изотерм, а в конечном итоге − подсчитать или уточнить промышленные запасы месторождения УВ и обосновать или уточнить систему его разработки (построить карту разработки).

При этом скважины могут быть заложены как в пределах залежи УВ, так и за ее пределами (за пределами ВНК).

Для обоснования места заложения скважины учитывается также необходимость изучения пород и перспективы нефтегазоносности пластов, залегающих ниже разведываемой или разрабатываемой залежи УВ (совмещение геологических и промысловых задач).

После выбора места заложения составляют проект этой скважины, основными разделами которого являются:

конструкция (соотношение диаметров и длин ствола, его ориентация; интервалы спуска, диаметры, толщина стенок и марки стали обсадных колонн; интервалы цементирования; тип и конструкция фильтра; другие необходимые элементы скважины);

технология проводки ствола (типы и размеры породоразрушающего инструмента − долот; режимы бурения − интенсивность циркуляции очи- щающего забой и ствол от выбуренной породы агента, скорость вращения долота, усилие со стороны долота на разрушаемый им забой; тип и физи- ческие свойства очищающего скважину агента; тип, соотношение диаметров и длин секций бурильной колонны; тип и размер забойного двигателя в случае его использования);

технология вскрытия продуктивных пластов (тип и физические свойства промывочного агента при проводке ствола в фильтровой зоне; соотношение давлений в скважине и пласте; способ закрепления ствола в фильтровой зоне; метод обеспечения притока пластового флюида в скважину и извлечения его на поверхность; другие технологические приемы и технические средства);

27

Соседние файлы в предмете Добыча нефти и газа