Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Техника и технология бурения нефтяных и газовых скважин

.pdf
Скачиваний:
2085
Добавлен:
13.08.2013
Размер:
14.58 Mб
Скачать

ровым раствором) и цементным раствором (камнем), возникшая в результате их синерезиса.

6.Каналы, образованные поднимающимся по цементному раствору

газом.

7.Капилляры, пронизывающие схватившийся, но еще не затвердевший цементный раствор и образованные в результате наличия в нем избыточ- ной воды (по сравнению с необходимым ее количеством для химического процесса соединения цемента с водой). Проницаемость цементного камня.

8.Каналы, образовавшиеся в цементном растворе в результате водоотделения на контакте с другими поверхностями или в его массе.

9.Трещины в цементном камне.

Изучение причин, способствующих возникновению газопроявлений в скважинах при цементировании обсадных колонн позволили наметить классификацию факторов, приводящих к газопроявлениям (рис. 7.11).

При составлении классификации учитывалось, что некоторые факторы, способствующие возникновению газопроявлений, в одинаковой мере относятся к двум классифицирующим группам, другие могут считаться весьма сомнительными, но они рассмотрены, потому что некоторые из них, как отмечают исследователи и производственники, возможно, играют некоторую роль в газопроявлениях.

В основу классификации взято разделение всех факторов, способствующих газопроявлениям, на пять групп: 1) геологические; 2) технические; 3) технологические; 4) физико-химические; 5) механические.

Данная градация охватывает весь процесс крепления скважин от нача- ла прокачивания тампонажного раствора в скважину до окончания времени его затвердения с последующим пребыванием в заколонном пространстве.

Вместе с тем следует учитывать, что для возникновения и развития газопроявления должны выполняться два условия:

наличие перепада давления (в случае газа − необязательно) и возможность образования канала для движения газа (или другого флюида).

Для оценки этих факторов (см. рис. 7.11) необходимы анализ и оценка их приоритетности в каждом конкретном случае с учетом прогресса в решении указанной проблемы.

Следствием движения газа (реже нефти или воды) в заколонном пространстве скважин являются выходы его на поверхность в некотором отдалении от устья. Это грифоны. Грифоны − весьма серьезное осложнение, нередко переходящее в аварию. Из земли выходит флюид, выбрасываются куски породы, выделяется значительное количество газа, нефти, воды. Спустя определенное время некоторые грифоны прекращают свое существование, другие же, наоборот, активизируются и функционируют долго. Чаще грифоны возникают при бурении и после крепления скважин, реже при эксплуатации, при стабильных режимах работы.

Основная причина возникновения грифонов − прорыв флюида на дневную поверхность: накопление флюида, в первую очередь, газа в заколонном или межколонном пространстве (между промежуточной и эксплуатационной колоннами); наличие путей поступления флюида к месту накопления (или транзитного движения) − негерметично зацементированное заколонное пространство; пропуски резьбовых соединений; протертости кондуктора (и) или колонны; наличие в верхней части разреза малоуплотненных пород, пород, дезинтегрированных сетью трещин, сообщающихся с

208

Рис. 7.11. Схема классификации газопроявлений при креплении скважины

поверхностью; пересечение скважиной плоскости тектонического нарушения, выходящей на поверхность.

7.5. ПРИХВАТЫ, ЗАТЯЖКИ И ПОСАДКИ КОЛОННЫ ТРУБ

Одним из самых распространенных серьезных и дорогостоящих видов осложнений при проводке скважин, иногда оканчивающихся ликви-

209

дацией скважины или бурением нового ствола, являются прихваты колонн бурильных и (или) обсадных труб. Как правило, прихватам предшествуют затяжки бурового инструмента, связанные с обвалами пород или попаданием бурильного инструмента в желоба, им же образованные и ликвидируемые без остановки технологического процесса.

Природа прихватов различна, поэтому и методы ликвидации их отли- чаются друг от друга и имеют свою специфику.

На возникновение прихватов колонн труб оказывает влияние множество факторов, дифференцировать которые с целью оценки их влияния трудно.

Можно схематично разделить действующие при прихвате колонн труб силы на силы механического прижатия труб к стенке скважины, связанные с действием перепада давления и горизонтальной составляющей веса колонны труб, и адгезионные силы взаимодействия, зависящие от свойств фильтрационной корки, состояния контактной зоны и условий среды. Эти силы действуют совместно. В зависимости от условий в скважине их соотношение меняется.

Природа прихватов колонн труб

Прихватом следует считать процесс, характеризующийся потерей подвижности колонны труб или скважинных приборов, которая не восстанавливается даже после приложения к ним максимально допустимых нагрузок с учетом запаса прочности материала (стали).

Наибольшее распространение прихваты имеют в юго-западных и южных районах СНГ, что вызвано наличием сложных горно-геологических условий, значительными глубинами скважин и необходимостью преодоления встречающихся при этом различных осложнений процесса их сооружения. Для юго-западных районов характерны прихваты, вызываемые действием повышенного перепада давления, а для северо-восточных районов − в результате заклинивания труб в суженной части ствола из-за нарушения режима промывки (сальникообразования, оседания частиц шлама и др.).

Большинство отечественных и зарубежных исследователей считает, что основная причина прихватов заключается в действии перепада давления и гидростатического давления, адгезионных сил и заклинивания долота в нерасширенных и суженных участках ствола скважин, а также заклинивание колонны труб вследствие скопления в стволе шлама в результате недостаточной промывки.

На возникновение прихватов существенно влияют физические свойства фильтрационных корок (липкость, прочность структуры, связанность частиц, пористость, проницаемость), контактирующих с бурильным инструментом.

Значение силы трения покоя между глинистой коркой и металличе- ской трубой зависит от количества прокачиваемой жидкости. При структурном режиме течения жидкости увеличение подачи насоса приводит к уменьшению силы трения вследствие интенсивного размыва рыхлого слоя корки, прилегающего к трубе, и в результате к уменьшению площади контакта между трубой и коркой. При турбулентном режиме течения увеличе- ние расхода прокачиваемой жидкости вызывает повышение гидродинами- ческого давления, следовательно, и перепада давления, а также силы трения.

210

Увеличение содержания утяжелителя приводит к возрастанию коэффициента трения, а профилактические добавки нефти к буровому раствору в несколько раз снижают коэффициент трения и уменьшают связанность частиц в глинистой корке.

Однако нефть при высоких температурах и давлениях теряет свои смазочные свойства. В этих условиях предпочтительнее использовать смазки на основе окисленного петролатума, жирных кислот, смеси гудронов, а также натуральных жиров. Более эффективно (для снижения коэффициента трения) совместное использование смазочных и поверхностно-активных веществ.

На возникновение прихватов под действием перепада давления существенно влияют структурно-механические свойства буровых растворов. Однако регулирование этих свойств не всегда помогает предотвратить прихваты инструмента, находящегося без движения в интервале залегания хорошо проницаемых пород.

С увеличением глубины бурения скважин (с соответствующим повышением температур и давления) значительно возрастает опасность прихватов, вызванных действием перепада давления, особенно в тех районах бурения, где применяют утяжеленные буровые растворы.

Установлено, что при перепаде 10 МПа сила прихвата зависит не только от перепада, но и от значения депрессии в зоне контакта инструмента и корки. Значение депрессии тем выше, чем больше уменьшается проницаемость глинистой корки. Когда сжатая часть корки непроницаема, инструмент прижимается к ней с силой, равной произведению перепада давления в зоне контакта на его площадь. Изменение проницаемости корки зависит от качества бурового раствора, степени его утяжеления, химической обработки и прочности структуры корки; при перепаде давления 16 МПа корка интенсивно формируется в течение первых 20−30 мин, когда скорость фильтрации максимальна. Сила прихвата при больших перепадах давления пропорциональна значению перепада давления. Коэффициент трения в паре диск – корка не зависит от перепада давления (нагрузки на диск) и изменяется в пределах 0,009−0,023 в соответствии с типом раствора. Кроме сил трения, как указывалось, на прихваты влияют и адгезионные силы. Увеличение диаметра применяемого бурильного инструмента приводит к повышению силы прихвата вследствие роста площади контакта труб с коркой, а также интенсивного нарастания корки вне зоны контакта.

Измерения показателей адгезионных и фрикционных свойств корок (по отношению к стали труб) при заданном перепаде давления показали, что сдвиг стали по корке происходит не по поверхности контакта, а в слое корки − вблизи этой поверхности. При перепаде давления до 2 МПа силы сдвига возрастают пропорционально перепаду давления, а при 3−4 МПа − эта зависимость нарушается в результате упрочнения корки. Дальнейший рост перепада давления не увеличивает сил сдвига. При исследовании сил прилипания установлено, что они интенсивно возрастают в первые 30− 40 мин контакта, а затем стабилизируются.

Таким образом, согласно существующим в настоящее время мнениям, причина явлений, приводящих к прихвату труб при бурении скважин, − действие перепада давления. Однако при прочих равных условиях в возникновении прихвата существенную роль играют и физико-механические свойства фильтрационных корок, с которыми соприкасается бурильный инструмент при прихвате.

211

Действие других факторов (температура, противодавление, качество смазочной добавки к буровому раствору, искривление ствола скважины, тип бурового раствора, проницаемость породы и фильтрационной корки, характер циркуляции) или не исследовали, или исследовали недостаточно, хотя в возникновении прихватов они (в ряде случаев) играют решающую роль.

Значительный объем исследований проведен А.К. Самотоем. К наиболее распространенным прихватам он относит:

у стенки скважины под действием перепада давления; вследствие заклинивания низа колонн при их движении в скважине; в результате желообразования; вследствие сальникообразования;

из-за нарушения устойчивого состояния пород; вследствие заклинивания колонн посторонними предметами; вследствие нарушения режима промывки;

по причине заклинивания породоразрушающего инструмента; испытателей пластов при опробовании скважин в процессе бурения. Способы ликвидации прихватов очень разнообразны. В южных райо-

нах страны с помощью установки нефтяных ванн ликвидируют 40−80 % прихватов, возникших вследствие действия перепада давления, и 20−40 % прихватов, возникших в результате заклинивания колонн в суженной части ствола скважины. Ликвидировать прихваты, возникшие вследствие обвала пород, чрезвычайно трудно, и они часто переходят в категорию аварий, так как приходится или фрезеровать прихваченную часть колонны, или устанавливать цементный мост и забуривать новый ствол.

Способы предупреждения и ликвидации прихватов

Профилактика предусматривает: использование рациональных конструкций скважин; применение буровых растворов, свойства которых способствуют предупреждению прихвата колонны и обеспечению устойчи- вого состояния пород, слагающих стенку скважин; нормирование превышения гидростатического давления над пластовым, недопущение непланируемого искривления ствола скважины; предупреждение образования желобов и ликвидацию желобных выработок; применение противоприхватных компоновок низа бурильных колонн; использование специальных приспособлений и устройств, предупреждающих заклинивание колонны труб в скважине в процессе бурения и при спускоподъемных операциях.

Наименьшая вероятность прихвата у инструментов, имеющих меньший диаметр и длину (центратор, наддолотный калибратор, пакеры и др.).

При выборе рациональной конструкции скважины необходимо строго придерживаться следующих основных требований: не допускать совместное вскрытие горизонтов с различными градиентами пластовых давлений; своевременно перекрывать опасный участок ствола промежуточной колонной или хвостовиком. Нарушение этих требований приводит к возникновению прихватов под действием перепада давления, ликвидация которых на большой глубине не всегда возможна.

Способствуют устранению осложнений, приводящих к прихватам, и многокомпонентные буровые растворы, сохраняющие устойчивость пород, слагающих стенку скважин. Рекомендовано: предупреждать термическую и термосолевую деструкции бурового раствора, кольматировать высокопро-

212

ницаемые породы, уменьшать колебания гидродинамического давления, формировать тонкую эластичную фильтрационную корку с низкими показателями фрикционных свойств и улучшать буримость пород.

Проблема сохранения устойчивости пород, слагающих стенки скважин, пока еще не полностью решена.

Применение известковых, гипсовых, малосиликатных с полимерными добавками при минимальной водоотдаче, с добавками поваренной соли и хлористого кальция, эмульсионных высокополимерных на неводной основе буровых растворов дает удовлетворительные результаты только в некоторых условиях, так как причины разупрочнения пород неодинаковы.

Противоприхватными свойствами обладают буровые растворы на углеводородной основе и обращенные эмульсии. Применение таких растворов благоприятствует улучшению буримости пород. Однако высокая стоимость, сложность регулирования их свойств в условиях высоких температур и давлений при агрессивной среде, дефицитность некоторых компонентов, повышенная пожароопасность сдерживают широкое использование этих буровых растворов.

Одна из наиболее сложных проблем при бурении − предотвращение коагуляции буровых растворов под действием высоких температур, сопровождающаяся ростом водоотдачи и интенсивным структурообразованием, что повышает прихватоопасность.

Осложнения в скважинах, вызываемые термоокислительной деструкцией бурового раствора и являющиеся потенциально возможными причи- нами прихватов, удается предотвратить обработкой бурового раствора специальными термостойкими защитными реагентами. Считается, что УЩР и КССБ термостойки при отсутствии солевой агрессии. Крахмал и КМЦ термостойки до температуры соответственно 100 и 120−150 °С (КМЦ − в зависимости от степени полимеризации). Акриловые сополимеры термостойки при более высоких температурах, что позволяет иметь низкую водоотдачу солевых растворов при температуре 180−200 °С, пресных − до 250 °С (гипан, метас). Однако до сих пор для условий полиминеральной агрессии и высокой температуре (200−300 °С) проблема регулирования свойств бурового раствора остается нерешенной.

Предотвратить прихваты в интервалах залеганий проницаемых пород можно их кольматацией, так как существующие механические и физикохимические способы кольматации просты и с успехом применяются в различных условиях (М.Р. Мавлютов).

Время выравнивания давления в приствольной зоне и фильтрационной корке до значения гидростатического, при прочих равных условиях, зависит от проницаемости пласта и заполняющего его флюида. По мере увели- чения степени кольматации проницаемых пород процесс выравнивания давления интенсифицируется, и вероятность возникновения прихвата в кольматированном участке ствола при действии гидростатического давления резко уменьшается. При создании больших гидростатических давлений значительно возрастает опасность возникновения прихвата. Так, ранее пробуренный участок ствола скважины, представленный проницаемыми породами, становится прихватоопасным с увеличением перепада давления, вызванного необходимостью повышения гидростатического давления для предупреждения возникновения нефте-, газо-, водопроявлений или обвалообразований.

Свойства бурового раствора не должны способствовать возникнове-

213

нию больших колебаний гидродинамического давления в стволе скважины в процессе циркуляции, при ее восстановлении и спускоподъемных операциях. Для этого реологические свойства буровых растворов должны быть по возможности минимальными и регулируемыми с помощью реагентов − понизителей вязкости и структурообразователей.

На возникновение прихватов в значительной степени влияют струк- турно-механические свойства фильтрационных пород (адгезионная способность, сопротивление сдвигу, прочность), зависящие от содержания твердой фазы в буровом растворе и ее состава, вида химической обработки и смазочной способности раствора.

Фрикционные свойства фильтрационных корок снижают применением высококачественных глинопорошков и утяжелителей, улучшением очи- стки раствора. Фильтрационные корки должны быть тонкими, эластичными, малоили непроницаемыми, с минимальными силами адгезии и коэффициентом трения.

Наименьшими показателями фрикционных свойств обладают фильтрационные корки, образовавшиеся из растворов, содержащих нефтепродукты с длинными углеводородными цепями (окисленный петролатум, синтетические жирные кислоты и т.п.).

Самая распространенная смазочная добавка на промыслах в настоящее время − сырая нефть, рациональное содержание которой в буровом растворе в зависимости от его плотности и температуры окружающей среды колеблется в пределах 10−18 %. Расчеты показывают, что в зависимости от геолого-технических условий бурения расход нефти для предупреждения прихватов составляет 0,05–0,10 т на 1 м проходки.

Эффективность применения нефти как смазочной добавки при высокой температуре резко снижается, поэтому целесообразнее использовать другие, менее дорогие и более эффективные продукты, например смеси гудронов (СГ), омыленные жирные кислоты (ОЖК), поверхностно-актив- ные вещества.

Строгие требования должны предъявляться к выполнению условия нормирования превышения гидростатического давления в скважине над пластовым.

Как правило, вероятность возникновения прихватов возрастает с увеличением произвольного искривления скважины. Характер искривления скважин, бурящихся в различных геолого-технических условиях, различен и зависит от совместного действия многих факторов. Используются жесткие компоновки низа бурильных колонн и регулирование осевых нагрузок на долото в зависимости от угла падения пластов и перемежаемости пород по твердости; внедряется контроль за искривлением скважин; применяются для бурения скважин большого диаметра реактивно-турбинный способ бурения (РТБ) и долотный бур (БД). Следует обратить особое внимание на возможность увеличения прихватов в горизонтальном бурении.

Наиболее серьезные осложнения, наблюдаемые при проводке скважин (особенно искривленных и наклонно направленных), − затяжки и посадки бурильного инструмента в участках ствола с желобными выработками, которые важно своевременно обнаружить и нейтрализовать.

Желобообразование можно обнаружить и оценить профилеметрией, а нейтрализовать − проработкой его интервалов специальными компоновками бурильного инструмента и взрывом в них гибких торпед. Для профилеметрии зон желобообразования необходим надежный многоточечный (шес-

214

ти-, восьми-) профилемер, позволяющий также исследовать азимутальное развитие желобных выработок в стволе скважины.

Как эффективные мероприятия для предупреждения прихватов можно использовать уменьшение фактической площади контакта труб со стенкой скважины, достигаемое в результате применения центрирующих приспособлений, УБТ профильного сечения, квадратных УБТ со смещенными гранями и т.д.

Около 50 % прихватов происходят вследствие заклинивания труб в результате огромной силы инерции колонны, предотвратить которую при высоких скоростях движения бурильного инструмента практически невозможно, так как бурильщик реагирует на появление затяжки или посадки только через 5−7 с после ее возникновения. Для торможения требуется 10−15 с, а общее время, в течение которого низ бурильной колонны взаимодействует со стенками скважины в момент посадки или затяжки, доходит до 25−30 с. Причем значение затяжки порой превышает допустимое, а значение посадки достигает веса бурильного инструмента. Для предотвращения заклинивания бурильной колонны необходимо четко контролировать нагрузки при спуске, подъеме, вращении и экстренно останавливать колонну при появлении малейших дополнительных сил сопротивления.

Для ликвидации прихватов широко применяются жидкостные ванны с применением в качестве рабочих агентов нефти, воды, кислот, щелочей, а также их комбинаций. Однако наиболее эффективны нефтяные ванны с использованием ПАВ, например с дисольваном. Механизм действия хими- чески малоактивных веществ (нефть, вода) до конца не изучен. Видимо, наряду с проникновением этих веществ в зону контакта труб с породой или с фильтрационной коркой, сопровождающимся смачиванием и смазыванием трущихся пар, происходят эрозия фильтрационных корок, образование в корках каналов, способствующих сообщению скважины с пластом и выравниванию давлений, повышение пластового давления в приствольной зоне скважины вследствие фильтрации нефти и воды в пласт при определенных условиях, в результате уменьшается перепад давления, действующий в зоне прихвата. Явления на границе сред металл − фильтрационная корка или порода, рабочий агент ванны − буровой раствор − стенка скважины − металл изучены недостаточно.

Для предупреждения миграции агентов ванн из зоны прихвата применяются буферные жидкости. Растворы, содержащие макромолекулярные соединения, обладают хорошо регулируемыми структурно-механическими свойствами (путем изменения концентрации полимера и подбора растворителей и разбавителей). Фильтратоотделение таких растворов крайне мало, несмешение их с буровым раствором и агентом ванны выгодно отличает их от других разделителей. При необходимости плотность жидкости, используемой в качестве буферной, может быть доведена до требуемых значений. Среди композиций указанных жидкостей в первую очередь могут найти широкое применение: а) раствор натурального каучука (НК) концентрацией 0,3−3,0 % в предельных углеводородах (бензине, керосине, дизельном топливе); б) раствор синтетических каучуков (СК) концентрацией 0,5−5,0 % в предельных или ароматических углеводородах (дизельном топливе, ароматизированном газоконденсате, сланцевом конденсате, ксилолах и др.); в) раствор полистирола концентрацией 0,2−3,0 % в ароматических углеводородах; г) растворы поливинилацетата в простых и сложных эфирах.

215

С точки зрения экономичности наиболее целесообразно применение растворов НК и СК, приготовляемых из соответствующих латексов.

Причинами безрезультатной установки ванн являются: несоответствие их виду прихвата; несоблюдение определенной технологически необходимой и достаточной последовательности проведения работ; значительная задержка во времени после возникновения прихвата; недостаточно выбранный объем рабочего агента для полного перекрытия зоны прихвата, уменьшения перепада давления и проведения необходимого цикла работ, непринятие мер по предупреждению миграции рабочего агента из зоны прихвата; смешивания его с буровым раствором, а также флокуляции барита в растворе.

Взрыв (в сочетании с прихватоопределителями) также можно рекомендовать для ликвидации прихватов, причем наиболее эффективно немедленное его использование с целью встряхивания колонны труб (применяют гибкие торпеды) и ликвидации заклинивания долота (применяют фугасные торпеды).

Для ликвидации прихватов используют гидроимпульсный способ, при котором реализуется эффект упругих колебаний колонны труб и жидкости при резком снятии предварительно созданных в них напряжений вследствие избыточного давления внутри колонны труб.

Этот способ наиболее эффективен для устранения прихватов, вызванных действием перепада давления, а также сальников и осыпей пород, реже − желобообразованием.

Ликвидация прихватов

Действия исполнителя при ликвидации прихвата базируются на совокупности накопленного им опыта и имеющейся информации о причи- не происшедшего прихвата и заключаются в выборе наиболее эффективного способа для конкретного случая и последовательном применении или чередовании различных способов.

Согласно существующим представлениям о причинах прихватов выделяются три основные категории прихватов (по терминологии теории статистических решений − «состояние природы»): θ1 − прихват под действием перепада давления; θ2 − заклинивание (в том числе при спусках-подъемах, вращении, в желобных выработках); θ3 − прихват вследствие сужения поперечного сечения ствола скважины (при обваливании пород, сальникообразовании, оседании утяжелителя, шлама, течении высокопластичных пород и т.д.).

Результативность известных способов ликвидации прихватов во многом определяется «состоянием природы». Так, использование ванн наиболее результативно при ликвидации прихватов, происшедших под действием перепада давления, а устройства импульсного воздействия (яссы, вибраторы) наиболее эффективны при ликвидации прихватов, вызванных заклиниванием. Существующие способы ликвидации прихватов классифицируются по четырем группам (по терминологии теории статистических решений − «действия»): a1 − установка ванны; a2 − механическое, гидромеханическое и другие виды импульсных воздействий; a3 − обуривание труб; a4 − установка моста и забуривание нового ствола.

Критерием оценки сравнительной эффективности способов принимается время T, затраченное на ликвидацию прихвата, которое определяется

216

с учетом проведения необходимых операций при производстве работ (расхаживание и определение зоны прихвата, подготовка агента ванны, его закачивание и продавливание, время воздействия или сборка ясса, отвинчи- вание и подъем свободной части колонны, спуск ясса, соединение с прихваченными трубами, промывка, работа яссом и т.д.).

Расхаживание прихваченной колонны

Расхаживание (натяжение и посадка) колонны труб и отбивка ее ротором не считаются самостоятельным методом освобождения прихва- ченной колонны, за исключением некоторых легких случаев прихватов. Способ расхаживания и значения нагрузок зависят от вида прихвата.

В случае прихвата под действием перепада давления необходимо производить расхаживание с помощью талевой системы и отбивание ротором при максимально допустимых для данных условий нагрузках и числах оборотов. Если в течение 30 мин интенсивного расхаживания инструмент освободить не удалось, необходимо снизить нагрузку до значения, не превышающего 15 % веса свободной части инструмента, чтобы не допустить распространения зоны прихвата вверх по стволу. Расхаживание должно быть непрерывным.

При освобождении инструмента, прихваченного вследствие сальникообразования, расхаживание ведется таким образом, чтобы не допустить уплотнения сальника чрезмерной посадкой и особенно натяжкой колонны труб или гидравлическим давлением при интенсивном восстановлении циркуляции. Натяжка при расхаживании не должна превышать 100 кН (при условии непревышения давления при промывке). Если колонна труб движется в ограниченных пределах, бурильщик обязан провернуть ее ротором и продолжать вращение на первой скорости, а также попытаться восстановить циркуляцию и промыть скважину. Дальнейшие работы должны проводиться под руководством бурового мастера и мастера или инженера по сложным работам.

Если прихват труб произошел вследствие обвалообразования, оседания шлама, утяжелителя или заклинивания в желобе, освободить их расхаживанием не удастся. Поэтому в этих случаях колонну труб необходимо расхаживать с нагрузками, не превышающими вес ее свободной части.

При расхаживании следует строго руководствоваться прочностными характеристиками бурильных труб. В отдельных случаях допускается расхаживать колонну труб с обеспечением запаса прочности 1,3, но при этом необходимо тщательно проверить индикатор веса, талевую систему, подъемные механизмы, тормозную систему, вышку, фундаменты.

Установка жидкостных ванн

Необходимость установки ванн определяется на основе тщательного изучения характера прихвата, установления вероятностных при- чин его возникновения с учетом выбора способа ликвидации прихвата.

Применение ванн как способа ликвидации прихвата − наиболее распространенный и действенный метод. Однако нередко он оказывается безрезультатным вследствие того, что: при выборе метода ликвидации прихвата не учитывают вероятные причины его возникновения; не соблюдают определенную, технологически необходимую и достаточную последова-

217

Соседние файлы в предмете Добыча нефти и газа