Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TPF_BILETY.doc
Скачиваний:
174
Добавлен:
18.05.2015
Размер:
2.07 Mб
Скачать

33)Понятие о диэлектрической проницаемости

Диэлектри́ческая проница́емость среды абсолютная — коэффициент, входящий в математическую запись закона Кулона и уравнение связи векторовэлектрической индукции и напряженности электрического поля [1]. Абсолютную диэлектрическую проницаемость εa (от англ. absolute — абсолютный) представляют[2] в виде произведения εa = εr ε0 относительной диэлектрической проницаемости среды εr (от англ. relative — относительный; εr для краткости часто называют просто диэлектрической проницаемостью и обозначают ε) и электрической постоянной ε0.

Диэлектри́ческая проница́емость среды относительная — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость εr является безразмерной величиной, обусловлена эффектом поляризации диэлектриков под действием электрического поля и определяется характеризующей этот эффект величиной диэлектрической восприимчивости среды. Значение εr вакуума равно единице, для реальных сред εr > 1. Для воздуха и большинства других газов в нормальных условиях значение εr близко к единице в силу их низкой плотности. В статическом электрическом поле для большинства твёрдых или жидких диэлектриков значение εr лежит в интервале от 2 до 8, для воды значение εr достаточно высокое, около 80. Значение εr велико для веществ с молекулами, обладающими большим электрическим дипольным моментом. Значение εr сегнетоэлектриковсоставляет десятки и сотни тысяч.

34)Условия на границе раздела диэлектриков.

На поверхности раздела двух диэлектриков с различными абсолютными диэлектрическими проницаемостями e1 и e2 (рис. 1.3) равны между собой касательные составляющие напряженности поля

(1.13)

и нормальные составляющие вектора электрического смещения

  (1.14)

Здесь индекс 1 относится к первому диэлектрику, а индекс 2 – ко второму.

Условия (1.13) и (1.14) можно представить и в таком виде

  и

Из данных граничных условий можно получить еще одно условие – условие преломления линий поля при переходе их из одного диэлектрика в другой:

,

где

q1 и q2 – углы между вектором напряженности (или смещения) и нормалями к границе раздела сред.

При этом, если вектор напряженности перпендикулярен к границе раздела, то электрическое смещение не меняется при переходе из одной среды в другую, а напряженность поля меняется скачком.

При переходе через границу раздела двух диэлектриков электрический потенциал не претерпевает скачков.

35)Равновесие зарядов на проводниках. Поле вблизи поверхности заряженного проводника

Носители заряда в проводнике способны перемещаться под действием сколь угодно малой силы. Поэтому для равновесия зарядов на проводнике необходимо выполнение следующих условий:

Напряженность поля всюду внутри проводника должна быть равна нулю,

В соответствии с (8.2) это означает, что потенциал внутри проводника должен быть постоянным ).

2. Напряженность поля на поверхности проводника должна быть в каждой точке направлена по нормали к поверхности:

Следовательно, в случае равновесия зарядов поверхность проводника будет эквипотенциальной.

Если проводящему телу сообщить некоторый заряд q, то он распределится так, чтобы соблюдались условия равновесия. Представим себе произвольную замкнутую поверхность, полностью заключенную в пределах тела. При равновесии зарядов поле в каждой точке внутри проводника отсутствует; поэтому поток вектораэлектрического смещения через поверхность равен нулю. Согласно теореме Гаусса сумма зарядов внутри поверхности также будет равна нулю. Это справедливо для поверхности любых размеров, проведенной внутри проводника произвольным образом. Следовательно, при равновесии ни в каком месте внутри проводника не может быть избыточных зарядов — все они распределятся по поверхности проводника с некоторой плотностью о.

Поскольку в состоянии равновесия внутри проводника избыточных зарядов нет, удаление вещества из некоторого объема, взятого внутри проводника, никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т. е. по его наружной поверхности.

На поверхности полости в состоянии равновесия избыточные заряды располагаться не могут. Этот вывод вытекает также из того, что одноименные элементарные заряды, образующие данный заряд q, взаимно отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Представим себе небольшую цилиндрическую поверхность, образованную нормалями к поверхности проводника и основаниями величины dS, одно из которых расположено внутри, а другое вне проводника (рис. 24.1). Поток вектора электрического смещения через внутреннюю часть поверхности равен нулю, так как внутри проводника Е, а значит и D, равно нулю. Вне проводника в непосредственной близости к немунапряженность поля Е направлена по нормали к поверхности. Поэтому для выступающей наружу боковой поверхности цилиндра а для внешнего основания (внешнее основание предполагается расположенным очень близко к поверхности проводника). Следовательно, поток смещения через рассматриваемую поверхность равен , где D — величина смещения в непосредственной близости к поверхности проводника. Внутри цилиндра содержится сторонний заряд ( — плотность заряда в данном месте поверхности проводника). Применив теорему Гаусса, получим: Отсюда следует, что напряженность поля вблизи поверхности проводника равна

36)Уравнения Лапласа и Пуассона. Общая задача электростатики

Уравнения Пуассона и Лапласа являются основными дифференциальными уравнениями электростатики. Они вытекают из теоремы Гаусса в дифференциальной форме. Действительно, подставляя в уравнение

вместо величин Ех; Еу; Еz их выражения через потенциал:

получаем уравнение

Это дифференциальное уравнение носит название уравнения Пуассона.

Интеграл

является решением уравнения Пуассона для случая, когда заряды распределены в конечной области пространства.

Если в рассматриваемой области пространства отсутствуют объемные электрические заряды, то уравнение Пуассона получает вид

и называется в этом частном случае уравнением Лапласа.

Отметим, что в цилиндрической и сферической системах координат уравнение Пуассона и Лапласа имеют другую форму записи. Поэтому данные уравнения часто записывают в виде, не зависящем от системы координат:

; (1.11)

(1.12)

Вектор напряженности

по теореме Гаусса   =>

  - уравнение Пуассона.

В случае  - нет зарядов между проводниками, получаем

 уравнение Лапласа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]