Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
молекулярная физика 4-6.doc
Скачиваний:
25
Добавлен:
13.05.2015
Размер:
8.84 Mб
Скачать

Лабораторная работа № 5 определение коэффициента диффузии паров воды в воздухе

Цель работы: определение коэффициента диффузии паров воды в воздухе.

Приборы и материалы: экспериментальная установка ФПТ1-4, термометр, секундомер, микроскоп МПБ-3, исследуемая жидкость (вода).

1. Краткая теория и методика выполнения работы

Наука, изучающая процессы, возникающие при нарушениях равновесия системы, носит название физической кинетики. При нарушении равновесия система стремится вернуться в равновесное состояние. При этом возникают так называемые явления переноса, в результате которых в физической системе происходит направленный пространственный перенос электрического заряда, массы, плотности, концентрации, импульса, энергии или какой-либо другой физической величины. Такие процессы являются необратимыми и сопровождаются возрастанием энтропии.

В термодинамике изучают следующие явления переноса: вязкость (или внутреннее трение) – перенос импульса, теплопроводность – перенос кинетической энергии и диффузию – перенос вещества. В простейшем случае явления переноса одномерны – определяющие их физические величины зависят только от одной декартовой координаты.

На основе молекулярно-кинетической теории вещества можно получить общее уравнение переноса, описывающее все три перечисленных выше явления.

Пусть сквозь площадку(рис. 5.1) в результате хаотического движения молекул переносится некоторая физическая величина. На расстояниях, равных средней длине свободного пробега молекул, справа и слева от площадкивыделим прямоугольные параллелепипеды малой толщины(). Внутри каждого параллелепипеда содержитсямолекул, где– концентрация молекул вещества.

В следствие равновероятного движения молекул по всем направлениям, в направлении перпендикулярном площадкесо стороны объема 1 будет перемещатьсямолекул. Так как объем 1 находится на расстоянии , то эти молекулы будут двигаться до площадкибез соударений. Такое же числомолекул достигнет площадкив обратном осинаправлении от объема 2.

Каждая молекула переносит некоторую величину (масса, импульс, кинетическая энергия), а все молекулы в выделенном объеме переносятили, где– физическая величина, переносимая молекулами, заключенными в единице объема. В результате сквозь площадкуиз объемов 1 и 2 за промежуток временипереносится физическая величина, равная:

. (5.1)

Считают, что все молекулы движутся с одинаковыми средними скоростями . Тогда молекулы из объемов 1 и 2, достигшие площадки, пересекают ее в течение времени. Тогда значение переносимой величины в единицу времени можно найти так:

. (5.2)

Изменение величины на единицу длины, то есть, есть градиент величинывдоль направления. Так как изменение этой величины происходит на расстоянии 2, то:

или . (5.3)

Подставив (5.3) в (5.2) и умножив обе части полученного уравнения на время, найдем поток переносимой физической величиныза промежуток временисквозь площадку в направлении оси :

. (5.4)

Уравнение (5.4) получено без предположения в каком из объемов 1 или 2 концентрация молекул, переносящих физическую величину, больше. Но перенос физической величины всегда происходит в направлении ее убывания, а градиент величины будет направлен противоположно соответствующему потоку, что в аналитической записи отражается знаком «минус». Введем его в уравнение (5.4). Получим:

. (5.5)

Это общее уравнение переноса, используемое при изучении явлений диффузии, вязкости и теплопроводности.

В данной работе изучается явление диффузии. Диффузия (от лат. diffusion – распространение, растекание) – взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении уменьшения концентрации вещества и ведет к его равномерному распределению по занимаемому объему.

Диффузия имеет место в газах, жидкостях и твердых телах, причем диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы (самодиффузия). Наиболее быстро диффузия происходит в газах, медленнее – в жидкостях, еще медленнее – в твердых телах, что обусловлено характером теплового движения частиц в этих средах.

Траектория движения каждой частицы газа представляет собой ломаную линию, так как в столкновениях она меняет направление и скорость движения. Поэтому диффузионное проникновение значительно медленнее свободного движения. Сме­щение частицы меняется со временем случайным образом, но его средний квадрат за большое число столкновенийрастет пропорционально времени :. Коэффициент пропорциональности называется коэффициентом диффузии. Это соотношение, полученное А. Эйнштейном, справед­ливо для любых процессов диффузии. Для простейшего случая самодиффузии в газах коэффициент диффузии может быть определен, если за среднее смещение принять среднюю длину свободного про­бега молекулы . Для газа , где – средняя скорость движения частиц, –среднее время между столкновениями. Таким образом, . Коэффициент диффузии обратно про­порционален давлению газа (так как ). С ростом температуры (при постоянном объёме) коэффициент увеличивается пропорционально , так как . С увеличением молярной массы умень­шается.

Рассмотрим подробнее диффузию в газах.

Пусть в газе, заполняющем пространство, находится другой газ, концентрация и парциальная плотность (то есть плотность, которую имел бы данный газ в выделенном объеме в отсутствии других газов) которого изменяются вдоль некоторой оси. Следовательно, сквозь площадку , перпендикулярную выбранной оси, в одном направлении будет наблюдаться больший поток молекул второго газа, чем в противоположном направлении. Если в общее уравнение переноса (5.5) вместо потокаподставить величину переносимой массыдиффундирующего газа, а вместо– его парциальную плотность, то получим уравнение диффузии:

. (5.6)

Уравнение (5.6) хорошо согласуется с полученным эмпирическим путем в 1885 г. немецким физиком Адольфом Фиком уравнением для массы газа, переносимой при диффузии сквозь площадку за время:

, (5.7)

где – коэффициент диффузии.

Это выражение называют первым законом Фика для диффузии.

Сравнивая уравнения (5.6) и (5.7), получаем формулу для определения коэффициента диффузии:

. (5.8)