Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МатЛекции.doc
Скачиваний:
103
Добавлен:
17.05.2013
Размер:
1.52 Mб
Скачать

9. Формула Грина

теор.:ПустьL– непрерывно дифференцируемая замкнутая положительно ориентированная кривая на плоскости, функцииP(x,y) иQ(x,y) непрерывно дифференцируемы в обл.D, границей которой явл.L, тогда

10. Поверхностный интегралы первого рода и их осн. Свойства. Вычисление поверхностных интегралов 1-го рода.

Пусть - поверхность в трехмерном пространстве. Функция. разобьем произвольноSна более мелкие частиS1,S2, …,Sn, , причемSiиSjне имеют общих внутренних точек. В каждойSkвыберем произвольную точкуи составим интегральную сумму. Пусть=max. Еслиисуществует и зависит от способа деленияSна более мелкие частиS1,S2, …,Snи выбора точекMkв них, то он называется поверхностным интегралом 1-го роа от функцииfповерхностиSи обозначаетсятеор.:Еслиfнепрерывна наSтосуществует.Свойства:1.2.3. ЕслиS=S1US2, гдеS1иS2не имеют общих внутр. точк, тоВычисление:Если пов-тьSзадана уравнением, то. Еслиf=1 наS, то- площадь поверхностиS

11. Дифференциальные уравнения первого порядка. Основные понятия

опр.:Дифференциальное Ур-е видаy’=f(x,y) илиF(x,y,y’)=0, гдеx– независимая переменная,y=y(x), аy’ – ее производная по переменнойx, называется дифференциальным уравнением первого порядка. опр.: Решением (частным решением) дифф. ур-я первого порядка на (a,b) называется ф-яy=φ(x), при подстановке которой вместе с ее производной в дифф. ур-е, получается тождество, выполняемое на всей (a,b). Ур-е Ф(x,y)=0, неявно задающее это решение, наз-ся интегралом (частным интегралом) дифф. ур-я первого порядка.опр.:Ф-яy= φ(x,C) наз-ся общим решением дифф. ур-я первого порядка, если 1) при каждом допустимом значении параметра С эта ф-я явл. частным решением этого дифф. ур-я; 2) каждое частное решение можно записать в видеy= φ(x,C0) при некотором значении параметра С=С0. Ур-е Ф(x,y,C)=0, неявно задающее общее решение дифф. ур-я первого порядка, наз-ся общим интегралом этого дифф. ур-я.

12. Дифференциальное уравнение первого порядка с разделяющимися переменными

Это ур-е вида y’=f1(x)f2(y). Разделяем переменные:Интегрируем левую часть равенства поy, правую поxи получаем общий интеграл дифф. ур-я:

Замечание: если при y=y0f2(y0)=0, тоy=y0 явл. решением данного дифф. ур-я и в процессе решения оно может быть потеряно.

13. Однородные дифференциальные уравнения первого порядка

Это ур-я, кот. можно привести к виду . Нужно сделать подстановку, в рез-те получим ур-е с разделяющимися переменными.

14. Линейные дифференциальные уравнения первого порядка

Это ур-я вида , гдеи- ф-ии, зависящие только отx. Решение линейных ур-ий первого порядка: 1) решаем ур-е- линейное однородное дифф. ур-е первого порядка, при этом. Разделим переменные:- общее решение 2) Метод вариации постоянной: считаем, чтоC=C(x) и находим решение ур-яв виде, тогдаПодставимyиy’ в ур-е:

В итоге: - общее решение ур-я

15. Уравнение Бернулли

Это дифф. ур-е первого порядка вида , гдеПодстановкасводит это ур-е к линейному дифф. ур-ю первого порядка:Подставим это в исходное ур-е:;- линейное дифф. ур-е первого порядка

16. Дифференциальные уравнения первого порядка в полных дифференциалах

Это ур-я вида , где,- некоторая ф-я,явл. уравнением в полных дифф-лах тогда и только тогда, когда. В этом случае ф-ясущ-ет и ур-е можно записать так:- общий интеграл исходного ур-я и нужно найти эту функцию:, где- некоторая ф-я, зависящая только отy.- это ур-е для нахождения ф-ии

17. Дифференциальные уравнения первого порядка не разрешенные относительно производной

Пусть дифф. ур-е можно записать в видеилиВведем параметр. Тогда решение первого ур-я находится из системы, а второго из. В общем случае решение получается заданным параметрически.

18. Теорема о существовании и единственности решения дифференциального уравнения первого порядка. Особые решения

опр.:Задача Коши для дифф. ур-я- это задача нахождения частного решения этого ур-я, удовлетворяющего начальному условию теорема о существовании и единственности задачи Коши:Пусть у дифф. ур-яфункциянепрерывна в областиDплоскостиxOyиограничена вD. Тогда

сущ-ет и единственно на промежутке частное решение этого ур-я, удовл. начальному условию.замечание:Кривая, на которой ф-я- частное решение дифф. ур-яназ-ся интегральной кривой. След-но в услових теоремы черезточкуединственная интегральная кривая этого ур-я.опр.:Точки областиD, в которых нарушается единственность решения задачи Коши, наз-ся особыми точками дифф. ур-я.опр.:Решение дифф. ур-я, в каждой точке которого нарушается единственность решения задачи Коши, наз-ся особым решением этого ур-я. особые решения не получаются из общего решения ни при каких значениях параметраC.нахождение особого значения:1) Если- общее решение дифф. ур-я, то особое решение находится из системыисключением параметраC(причем надо проверить, что это решение) 2) Если Ф(x,C)=0 – общий интеграл дифф. ур-я, то особое решение находится из системыисключением параметраC(причем надо сделать проверку)

Соседние файлы в предмете Алгебра и геометрия