Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика грунтов - 2 семестр.doc
Скачиваний:
183
Добавлен:
11.05.2015
Размер:
2.44 Mб
Скачать

Пример расчета

Дано:

Высота стенки H=6 м.

Высота заглубления стенки h/=1,5 м.

Угол внутреннего трения грунта φ=160.

Удельный вес грунта γ=22 кН/м3

Решение.

Активное давление грунта на подпорную стенку:

Равнодействующая активного давления:

225 кН/м.

Пассивное давление грунта на подпорную стенку:

Равнодействующая пассивного давления:

43,58 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.1).

При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.1. Расчетная схема подпорной стены

3.4.2. Определение давления на подпорную стенку от идеально сыпучего грунта с учетом пригруза на поверхности грунта

Действие сплошнго равномерно распределенного пригруза в этом случае заменяется эквивалентной высотой слоя грунта, равной:

. (3.4.6)

Активное давление на уровне верха подпорной стенки:

. (3.4.7)

Активное давление на подошве подпорной стенки:

. (3.4.8)

Равнодействующая активного давления:

. (3.4.9)

Пример расчета

Высота стенки H=6 м.

Высота заглубления стенки h/=1,5 м.

Угол внутреннего трения грунта φ=160.

Удельный вес грунта γ=22 кН/м3.

Интенсивность пригрузки

Решение.

Эквивалентная высота слоя грунта:

2,27м.

Активное давление на уровне верха подпорной стенки:

28,36кПа.

Активное давление на подошве подпорной стенки:

103,33 кПа.

Равнодействующая активного давления:

395,07 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.2).

При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.2. Расчетная схема подпорной стены с пригрузом

3.4.3. Определение давления на подпорную стенку от связного грунта

Действие сил сцепления заменяется всесторонним давлением связности:

. (3.4.10)

Далее приводим давление связности по вертикали к эквивалентному слою грунта:

. (3.4.11)

Активное давление на подошве подпорной стенки:

(3.4.12)

Подставляя значения и преобразовывая, получаем:

. (3.4.13)

На некоторой глубине суммарное давление будет равно нулю, из условия находим высотуhс:

. (3.4.14)

Равнодействующая активного давления:

. (3.4.15)

Равнодействующая пассивного давления в связных грунта будет равна:

. (3.4.16)

Пример расчета

Высота стенки H=6 м.

Высота заглубления стенки h/=1,5 м.

Угол внутреннего трения грунта φ=210.

Удельное сцепление грунта с=18 кПа.

Удельный вес грунта γ=22 кН/м3.

Решение:

Действие сил сцепления заменяем всесторонним давлением связности:

46,88 кПа.

Далее приводим вертикальное давление связности к эквивалентному слою грунта:

2,13м.

Активное давление на подошве подпорной стенки:

38,0 кПа.

2,37 м.

Равнодействующая активного давления:

68,97 кН/м.

Равнодействующая пассивного давления:

131,59 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.3). При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.3. Расчетная схема подпорной стены

3.5. Задача №5. Расчет осадки методом послойного суммирования

Величину полной стабилизированной осадки грунтовой толщи по методу послойного суммирования определяют как сумму осадок элементарных слоев грунта по формуле:

,

где - среднее напряжение в- ом элементарном слое грунта, равное полусумме напряжений на верхнейи нижнейграницах этого слоя;

- расстояние от подошвы полосы нагружения до элементарного слоя;

- толщина элементарного слоя;

- модуль общей деформации грунта элементарного слоя;

- безразмерный коэффициент, принимаемый для всех грунтов равным 0,8;

- число элементарных слоев грунта, на которое разделена по глубине активная зона сжатия.

Напряжения вычисляются по формуле:

,

где - коэффициент рассеивания напряжений, принимаемый для полосообразной нагрузки () по таблице в зависимости от относительной глубины;

- давление на подошве полосы нагружения, вызывающее осадку;

- интенсивность полосообразной нагрузки;

- природное давление в грунте на уровне подошвы полосы нагружения.

Значения коэффициента приведены в табл.2.1 приложения 2 настоящих методических указаний.

Глубина активной зоны сжатия соответствует такой глубине, ниже которой деформациями грунтовой толщи можно пренебречь. В общем случае её рекомендуют принимать на глубине, где напряжениесоставляет 0,2 величины природного давления.

При построении расчетной схемы следует принимать масштаб расстояний 1:50, масштаб напряжений 0,05 МПа в 1 см.

Пример.

Дано:

Решение: Вычисляем ординаты эпюр природного давления и вспомогательной эпюры:

на уровне поверхности земли

=0 =0

на уровне грунтовых вод

на уровне подошвы фундамента с учетом взвешивающего действия воды

,

где .

, .

на границе первого слоя

, .

Так как во втором слое залегает водонепроницаемая глина, к вертикальному напряжению на кровлю глины добавляется гидростатическое давление столба воды, находящейся над глиной:

тогда полное вертикальное напряжение, действующее на кровлю глины:

, .

на границе второго слоя

, .

Определяем давление на подошве полосы нагружения, вызывающее осадку:

Разбиваем толщу грунта под подошвой полосы нагружения на элементарные слои:

Для удобства расчета осадки все вычисления ведем в табличной форме.

Наименование

грунта

, м

,кПа

, кПа

песок

0,00

0,64

0,64

0,62

0,00

0,64

1,28

1,90

0,0

0,8

1,6

2,4

1,000

0,881

0,642

0,477

250,5

220,7

160,8

119,5

13000

глина

0,64

0,64

0,64

0,64

0,64

0,50

2,54

3,18

3,82

4,46

5,10

5,60

3,2

4,0

4,8

5,6

6,4

7,0

0,374

0,306

0,258

0,223

0,196

0,180

93,7

76,7

64,6

55,9

49,1

45,1

31000

Рис.3.5. Расчетная схема к определению осадки методом послойного суммирования

В нашем случае напряжения на уровне подошвы второго слоя .

Определяем величину осадки в пределах двух слоев:

< Su = 8 см. Условие выполняется, следовательно, фундамент запроектирован правильно.