Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биологическое окисление.doc
Скачиваний:
736
Добавлен:
08.05.2015
Размер:
254.98 Кб
Скачать

11

Биологическое окисление

Биологическое окисление – это совокупность окислительно-восстановительных превращений различных веществ в живых организмах. Окислительно-восстановительными называют реакции, протекающие с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Типы процессов биологического окисления:

1) аэробное (митохондриальное) окисление предназначено для извлечения энергии питательных веществ с участием кислорода и накоплении её в виде АТФ. Аэробное окисление называется также тканевым дыханием, поскольку при его протекании ткани активно потребляют кислород.

2) анаэробное окисление – это вспомогательный способ извлечения энергии веществ без участия кислорода. Анаэробное окисление имеет большое значение при недостатке кислорода, а также при выполнении интенсивной мышечной работы.

3) микросомальное окисление предназначено для обезвреживания лекарств и ядов, а также для синтеза различных веществ: адреналина, норадреналина, меланина в коже, коллагена, жирных кислот, желчных кислот, стероидных гормонов.

4) свободнорадикальное окисление необходимо для регуляции обновления и проницаемости клеточных мембран.

Основным путём биологического окисления является митохондриальное, связанное с обеспечением организма энергией в доступной для использования форме. Источниками энергии для человека являются разнообразные органические соединения: углеводы, жиры, белки. В результате окисления питательные вещества распадаются до конечных продуктов, в основном - до СО2 и Н2О (при распаде белков также образуется NH3). Выделяемая при этом энергия накапливается в виде энергии химических связей макроэргических соединений, преимущественно – АТФ.

Макроэргическими называются органические соединения живых клеток, содержащие богатые энергией связи. При гидролизе макроэргических связей (обозначаются извилистой линией ~) высвобождается более 4 ккал/моль (20 кДж/моль). Макроэргические связи образуются в результате перераспределения энергии химических связей в процессе обмена веществ. Большинство макроэргических соединений являются ангидридами фосфорной кислоты, например, АТФ, ГТФ, УТФ и т.д. Аденозинтрифосфат (АТФ) занимает центральное место среди веществ с макроэргическими связями.

аденин – рибоза – Р ~ Р ~ Р, где Р – остаток фосфорной кислоты

АТФ находится в каждой клетке в цитоплазме, митохондриях и ядрах. Реакции биологического окисления сопровождаются переносом фосфатной группы на АДФ с образованием АТФ (этот процесс называется фосфорилированием). Таким образом, энергия запасается в форме молекул АТФ и при необходимости используется для выполнения различных видов работы (механической, электрической, осмотической) и для осуществления процессов синтеза.

Система унификации субстратов окисления в организме человека

Непосредственное использование химической энергии, содержащейся в молекулах пищевых веществ невозможно, потому что при разрыве внутримолекулярных связей выделяется огромное количество энергии, которое может привести к повреждению клетки. Чтобы пищевые вещества, поступившие в организм, должны пройти ряд специфических превращений, в ходе которых происходит многостадийный распад сложных органических молекул на более простые. Это даёт возможность постепенного высвобождения энергии и запасания её в виде АТФ.

Процесс превращения разнообразных сложных веществ в один энергетический субстратназывается унификацией. Выделяют три этапа унификации:

1. Подготовительный этап протекает в пищеварительном тракте, а также в цитоплазме клеток организма. Крупные молекулы распадаются на составляющие их структурные блоки: полисахариды (крахмал, гликоген) – до моносахаридов; белки – до аминокислот; жиры – до глицерина и жирных кислот. При этом выделяется небольшое количество энергии (около 1%), которая рассеивается в виде тепла.

2. Тканевые превращения начинаются в цитоплазме клеток, заканчиваются в митохондриях. Образуются ещё более простые молекулы, причём число их типов существенно уменьшается. Образующиеся продукты являются общими для путей обмена разных веществ: пируват, ацетил-коэнзимА (ацетил-КоА), α-кетоглутарат, оксалоацетат и др. Важнейшим из таких соединений является ацетил-КоА – остаток уксусной кислота, к которому макроэргической связью через серу S присоединён коэнзим А - активная форма витамина В3 (пантотеновой кислоты). Процессы распада белков, жиров и углеводов сходятся на этапе образования ацетил-КоА, образуя в дальнейшем единый метаболический цикл. Для этого этапа характерно частичное (до 20%) освобождение энергии, часть которой аккумулируется в виде АТФ, а часть рассеивается в виде тепла.

3. Митохондриальный этап. Продукты, образовавшиеся на второй стадии, поступают в циклическую окислительную систему - цикл трикарбоновых кислот (цикл Кребса) и связанную с ним дыхательной цепи митохондрий. В цикле Кребса ацетил-КоА окисляется до СО2и водорода, связанного с переносчиками – НАД+·Н2и ФАД·Н2. Водород поступает в дыхательную цепь митохондрий, где происходит его окисление кислородом до Н2О. Этот процесс сопровождается высвобождением примерно 80% энергии химических связей веществ, часть которой используется на образование АТФ, а часть - выделяется в виде тепла.

Этапы

Белки

Углеводы

(полисахариды)

Жиры

I подготовительный; высвобождается 1% энергии питательных веществ (в виде тепла);

аминокислоты

глюкоза

глицерин,

жирные кислоты

II тканевые превращения; 20% энергии в виде тепла и АТФ

ацетил-КоА (СН3-СО~SKoA)

III митохондриальный этап;

80% энергии (примерно половина - в виде АТФ, остальное - в виде тепла).

Цикл трикарбоновых кислот

СО2

Дыхательная цепь митохондрий О2

Н2О

Классификация и характеристика основных оксидоредуктаз в тканях

Важной особенностью биологического окисления является то, что оно протекает под действием определённых ферментов (оксидоредуктаз). Все необходимые ферменты для каждой стадии объединены в ансамбли, которые, как правило, фиксируются на различных клеточных мембранах. В результате слаженного действия всех ферментов химические превращения осуществляются постепенно, как на конвейере. При этом продукт реакции одной стадии является исходным соединением для следующей стадии.

Классификация оксидоредуктаз:

1. Дегидрогеназы осуществляют отщепление водорода от окисляемого субстрата:

SH2 + A → S +AH2

В процессах, связанных с извлечением энергии, наиболее распространённый тип реакций биологического окисления – дегидрирование, то есть отщепление от окисляемого субстрата двух атомов водорода и перенос их на окислитель. В действительности водород в живых системах находится не в виде атомов, а представляет собой сумму протона и электрона (Н+ и ē), маршруты движения которых различны.

Дегидрогеназы являются сложными белками, их коферменты (небелковая часть сложного фермента) способны быть и окислителем, и восстановителем. Забирая водород от субстратов коферменты переходят в восстановленную форму. Восстановленные формы коферментов могут отдавать протоны и электроны водорода другому коферменту, который имеет более высокий окислительно-восстановительный потенциал.

1) НАД+- и НАДФ+-зависимые дегидрогеназы (коферменты - НАД+ и НАДФ+ - активные формы витамина РР). Присоединяют два атома водорода от окисляемого субстрата SH2, при этом образуется восстановленная форма - НАД+·Н2:

SH2 + НАД+ ↔ S + НАД+·Н2

2) ФАД-зависимые дегидрогеназы (коферменты - ФАД и ФМН – активные формы витамина В2). Окислительные способности этих ферментов позволяют им принимать водород как непосредственно от окисляющегося субстрата, так и от восстановленного НАДН2. При этом образуются восстановленные формы ФАД·Н2 и ФМН·Н2.

SH2 + ФАД ↔ S + ФАД·Н2

НАД+·Н2 + ФМН ↔ НАД+ + ФМН·Н2

3) коэнзим Q или убихинон, который может дегидрировать ФАД·Н2 и ФМН·Н2 и присоединять два атома водорода, превращаясь в КоQ·Н2 (гидрохинон):

ФМН·Н2 + КоQ ↔ ФМН + КоQ·Н2

2. Железосодержащие переносчики электронов геминовой природы – цитохромы b, c1, c, a, a3. Цитохромы – это ферменты, относящиеся к классу хромопротеидов (окрашенных белков). Небелковая часть цитохромов представлена гемом, содержащим железо и близким по строению к гему гемоглобина.Одна молекула цитохрома способна обратимо принимать один электрон, при этом меняется степень окисления железа:

цитохром(Fe3+) + ē ↔ цитохром(Fe2+)

Цитохромы a, a3 образуют комплекс, называемый цитохромоксидазой. В отличие от других цитохромов, цитохромоксидаза способна взаимодействовать с кислородом – конечным акцептором электронов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]