Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар по биохимии.doc
Скачиваний:
66
Добавлен:
03.05.2015
Размер:
139.78 Кб
Скачать
  1. Обмен углеводов. Нормы потребления, структура углеводного питания, переваривание. Синтез и мобилизация гликогена. Аэробное и анаэробное окисление углеводов.

Обмен углеводов занимает центральное место в обмене веществ и энергии.

Запасы углеводов в организме человека значительно малы, всего 2-3% от всей массы тела. Человек, не занимающийся спортом, может удовлетворять потребность тканей в углеводах около 12 часов, а спортсмен - значительно меньшее время. Для того чтобы поддержать работоспособность, углеводы должны поступать в организм с пищей. Моносахариды (глюкоза, фруктоза) в органах пищеварения не изменяются. Дисахариды (мальтоза, сахароза, лактоза) проходят до тонкого кишечника без изменений, а в нем гидролизуются под воздействием ферментов.

Полисахариды (крахмал, гликоген) начинают перевариваться в полости рта, где пища смачивается слюной и пережевывается. Слюна содержит фермент амилазу, который расщепляет крахмал до декстринов. Так как в ротовой полости пища находится непродолжительное время, крахмал ферментами слюны переваривается незначительно. Из ротовой полости пища попадает в желудок, где среда сильнокислая, что инактивирует амилазу слюны, которая продолжает работать некоторое время лишь в глубине пищевого комка. В желудке ферментов, расщепляющих углеводы, нет.

В двенадцатиперстной кишке происходит дальнейшее переваривание полисахаридов и полученных декстринов. В кишечнике происходит нейтрализация соляной кислоты бикарбонатом натрия панкреатического сока, за счет щелочной среды.

В результате реакции нейтрализации образуются углекислый газ, который способствует перемешиванию пищи с пищеварительными соками кишечника, и поваренная соль, которая активирует амилазу, поступающую из поджелудочной железы. Под действием активной амилазы поджелудочного и кишечного соков идет дальнейшее превращение декстринов в мальтозу, а последняя при участии мальтазы превращается в глюкозу.

Получается, что переваривание сложных углеводов осуществляется в двух отделах пищеварительной системы: ротовой полости и тонком кишечнике.

Всасывание моносахаридов идет по типу активного транспорта в виде фосфорных эфиров (глюкоза-6-фосфат), образование которых происходит в эпителии кишечной стенки при участии АТФ, т.е. требует затраты энергии. Из кишечника моносахариды, среди которых основным является глюкоза, через капилляры кишечных ворсинок направляются в кровеносную систему, освобождаются от фосфорной группы и с током крови через воротную вену доставляются в печень, где значительная часть глюкозы задерживается и идет на синтез гликогена, а часть поступает в большой круг кровообращения, разносится по всем органам и тканям, и затем используется для энергетического обеспечения ЦНС и мышц, синтеза гликогена в мышцах, ЦНС и сердца, пластических функций и т.д. Избыток глюкозы может переходить в жир и откладываться в жировых депо.

В сутки взрослому человеку требуется 450-600 г углеводов, которые дают 2000-2500 ккал (до 75% всей энергии организма).

Синтез гликогена активно протекает в период отдыха после мышечной работы, так как он идет с затратой АТФ. Необходимым условием синтеза является гипергликемия. Регуляторами процесса являются ЦНС, которая получает информацию от рецепторов, расположенных в стенках кровеносных сосудов, и гормон инсулин.

Мобилизация гликогена. При интенсивной мышечной работе или голодании глюкоза усиленно используется и в крови возникает гипоглекимия, что приводит к рефлекторному возбуждению сахарного центра. Возбуждение быстро распространяется по нервным путям в спинном мозге, переходит в симпатический ствол и по симпатическим нервам достигает печени. В результате такого возбуждения нервной системы часть гликогена печени распадается с образованием глюкозы, которая поступает в кровь, концентрация ее в крови увеличивается.

Мобилизация гликогена не требует затрат АТФ и регулируется гормонами: адреналином, глюкагоном, тироксином.

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы).

Аэробный гликолиз - это процесс окисления глюкозы до ПВК, протекающий в присутствии О2. Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О2

Анаэробный путь окисления углеводов может начинаться с использования свободной глюкозы (тогда он называется гликолизом) или с использования гликогена мышц (называется гликогенолизом). Это ферментативные реакции, которые можно условно разделить на четыре следующих друг за другом этапа.

  1. Подготовительный. Молекула глюкозы или одно мономерное звено гликогена превращается в две молекулы фосфоглицеринового альдегида. Преобразование глюкозы требует затрат двух молекул АТФ, а гликогена-одной.

  2. Окисление. Фосфоглицериновый альдегид окисляется НАД-дегид-рогеназами в присутствии фермента коэнзима А (кофермент - HS-KoA) и фосфорной кислоты, образуя 1,3-дифосфоглицериновую кислоту и восстановительную форму НАД-дегидрогеназ.

  3. Наработка энергии. Молекулы АТФ синтезируются в двух реакциях субстратного фосфорилирования.

  4. Восстановление пировиноградной кислоты и превращение ее в молочную.

Донором водорода в данном случае является фосфоглицериновый альдегид, акцептором водорода-пировиноградная кислота, а не кислород, поэтому гликолиз и гликогенолиз называются анаэробными процессами.

Более выгодным для организма является окисление углеводов в аэробных условиях.

Согласно современным представлениям первые стадии гликолиза и аэробного окисления глюкозы совпадают и протекают при участии одних и тех же ферментов.

Но на этапе окисления в аэробных условиях водород (2НАД•Н2), полученный при дегидрировании НАД-дегидрогеназами 2 молекул фосфоглицеринового альдегида, передается по цепи дыхательных ферментов на кислород, в результате чего образуется вода и 6 молекул АТФ. Кардинальное расхождение путей анаэробного и аэробного окисления глюкозы происходит на стадии пировиноградной кислоты. В первом случае она восстанавливается при участии НАД•Н2 в молочную кислоту, во втором случае - подвергается окислительному декарбоксилированию (отщепление 2Н+ и С02) и превращается в активную форму уксусной кислоты - ацетилкоэнзим А (ацетил-КоА).

Эту реакцию регулирует целый ряд ферментов, коферментами которых являются: тиаминпирофосфат, НАД, коэнзим А, амид липоевой кислоты, ионы магния. Так как из одной молекулы глюкозы образуется 2 молекулы пировиноградной кислоты, то среди конечных продуктов ее превращения будут

2 молекулы Н2О, 2 молекулы СО2, 2 молекулы НАД•Н2 и 2 молекулы ацетил-КоА. Водород от восстановительного НАД переносится по цепи дыхательных ферментов на кислород, в результате чего образуется 6 АТФ. Ацетил-КоА поступает в цикл Кребса, где окисляется до СО2, Н2О. При этом каждая молекула ацетил-КоА обеспечивает синтез 12 молекул АТФ.